

How to Extract Data from the Binary File of SIGLENT oscilloscope

E03A

Revision Record

Version	Update Date	Revise content
E02A	2022-1-17	
E03A		Add a new table "Version Compatibility
		Table" with different versions of Bin as
	2024-6-4	chapters.
		Add a chapter with bin_head_ver=6.
		Fixed some issues.

Index

Hov	v to Extract Data from the Binary File of Siglent oscilloscope	اا
Wa١	veform Binary Format Description	4
	Version Compatibility	4
	Binary in Old Model Platform	5
	Calculate the Sample Rate	8
	Calculate the Vertical Offset	8
	Calculate the Time Delay	9
	Convert the Data to Voltage	9
	V1 Binary without Version No(CH1_ON Starting address 0x44)	9
	V2 Binary without Version No(CH1_ON Starting address 0x44, The starting address or	f tdiv
	has changed)	13
	Convert the Data to Voltage	17
	Binary V2.0 (scp_data_unit 16 bytes)	18
	Convert the Data to Voltage	22
	Calculate the Time Value of the Data	23
	Binary V3.0 (Added 40 bytes for Bin version and scp_data_unit)	23
	Convert the Data to Voltage	28
	Calculate the Time Value of the Data	29
	Binary V3.1 (Add Byte order, Hori_divnum, code, math parameters)	29
	Convert the Data to Voltage	37
	Calculate the Time Value of the Data	37
	Binary V4.0 (Add data_offset_byte and memory parameters)	
	Convert the Data to Voltage	46
	Calculate the Time Value of the Data	47
	Binary V6.0 (New bin file structure)	47
	Convert the Data to Voltage	49
	Calculate the Time Value of the Data	
.mlg	g File of Measure Logger	49
*.sl	g File of Sample logger	52
	Convert the Data to Voltage	56
	Calculate the Time Value of Data	56

Waveform Binary Format Description

Version Compatibility

Bin Version	Update Date	Model Support	Revise content
Binary in Old	2017-10-25	SDS1000X	
Model Platform	2017-10-25	SDS2000X	
V1	2018-3-1	SDS1xx2X-E	
	2016-3-1	SDS1xx4X-E(6.1.20~6.1.25)	
V2	2023-2-7	SDS1xx2X-E(1.3.20&later)	
V2.0		SDS1xx4X-E (6.1.26&later)	scp_data_unit 16 bytes
	2018-6-15	SDS2000X-E(1.1.8&later)	(8 data+4 orders of
	2010-0-13	SDS5000X(0.6.7~0.8.5R2)	magnitude+4 units),
		SDS2000X PLUS(1.1.6~1.2.3)	size (Head)=2k
V3.0			Add 40 bytes of Bin
		SDS5000X (0.8.6~0.9.3Rx)	version and
	2019-7-22	SDS2000X (0.0.0 10.3.51X) SDS2000X PLUS (1.2.6~1.3.9)	scp_data_unit (8
	2013-1-22	SDS6000	data+4 orders of
		000000	magnitude+28 units),
			size (Head)=2k
V3.1			Added Byte order,
	2021-4-28	SDS5000X(0.9.5&later)	Hori_divnum, code,
2021-4-20		SDS6000(1.2.2.0&later)	math parameters with
			size (Head)=2k
V4.0		SDS800XHD	
		SDS1000XHD	
		SDS2000XHD	Add data_offset_byte
	2022-1-17	SDS2000X PLUS(1.5.2&later)	and memory
	2022-1-17	SDS3000XHD	parameters, size
		SDS5000X(0.9.6&later)	(Head)=4k
		SDS6000(1.4.1.0&later)	
		SDS7000	
V6.0	2023-8-10	SSL(0.4.9.0&later)	New bin file structure

Binary in Old Model Platform

SDS1000X || SDS2000X Update date: 2017-10-25

Table 1 Format of the Binary File

Parameter	Address	Description	
wave_length	0x00-0x03	Reserved	
mso_wave_length	0x04-0x07	Digital channels wave length	
mso_ch_open_num	0x10-0x13	Wave length in units of sample points.	
		32-bit integer	
mso_ch_open_stats	0x14-0x23	on/off status of d0-d15, 1 - ON, 0 - OFF	
		32-bit integer	
		d0:0x14 d8:0x15	
		d1:0x16 d9:0x17	
		d2:0x18 d10: 19	
		d3:0x1a d11: 1b	
		d4: 0x1c d12:0x1d	
		d5: 0x1e d13:0x1f	
		d6: 0x20 d14:0x21	
		d7: 0x22 d15:0x23	
ch1_volt_div_val	0xbc-0xbf	V/div value of CH1, in units of mV. Such as	
		2.48 mV/div.	
		32-bit float point, little endian.	
ch2_volt_div_val	0xc0-0xc3	V/div value of CH2.	
ch3_volt_div_val	0xc4-0xc7	V/div value of CH3.	
ch4_volt_div_val	0xc8-0xcb	V/div value of CH4.	
ch1_vert_offset	0xdc-0xdf	Offset value of CH1, with the unit of pixel.	
		Refer to "Calculate the Vertical Offset" to get	
		the actual offset voltage.	
		32-bit signed integer, little endian.	
ch2_vert_offset	0xe0-0xe3	Offset value of CH2.	
ch3_vert_offset	0xe4-0xe7	Offset value of CH3.	
ch4_vert_offset	0xe8-0xeb	Offset value of CH4.	
ch1_on	0x100-0x103	on/off status of CH1, 1 - ON, 0 - OFF	
		32-bit signed integer, little endian.	
ch2_on	0x104-0x107	on/off status of CH2.	
ch3_on	0x108-0x10b	on/off status of CH3.	
ch4_on	0x10c-0x10f	on/off status of CH4.	
time_div	0x248-0x24b	T/div index. Refer to Table 2 for the details.	
		32-bit signed integer, little endian.	

time_delay	0x250-0x253	Time delay (Trigger delay) value, in units of pixel. Refer to "Calculate the Time Delay" to get the actual time delay.
data	0x1470-end	32-bit signed integer, little endian. Data. Analog data first, and then digital data. Only data of the enabled channel(s) are stored to the file.
		8-bit unsigned integer for analog data. 1-bit binary integer for digital data.

Table 2 T/div Table

Index	SDS1000X	SDS2000X
0		1 ns/div
1	2 ns/div	2 ns/div
2	5 ns/div	5 ns/div
3	10 ns/div	10 ns/div
4	20 ns/div	20 ns/div
5	50 ns/div	50 ns/div
6	100 ns/div	100 ns/div
7	200 ns/div	200 ns/div
8	500 ns/div	500 ns/div
9	1 us/div	1 us/div
10	2 us/div	2 us/div
11	5 us/div	5 us/div
12	10 us/div	10 us/div
13	20 us/div	20 us/div
14	50 us/div	50 us/div
15	100 us/div	100 us/div
16	200 us/div	200 us/div
17	500 us/div 500 us/div	
18	1 ms/div	1 ms/div
19	2 ms/div	2 ms/div
20	5 ms/div	5 ms/div
21	10 ms/div	10 ms/div
22	20 ms/div	20 ms/div
23	50 ms/div	50 ms/div
24	100 ms/div	100 ms/div
25	200 ms/div	200 ms/div
26	500 ms/div	500 ms/div
27	1 s/div	1 s/div
28	2 s/div 2 s/div	
29	5 s/div 5 s/div	
30	10 s/div	10 s/div
31	20 s/div 20 s/div	
32	50 s/div	50 s/div

Table 3 V/div Table

Index	SDS1000X	SDS2000X
0	500uV/div	1 mV/div

Index	SDS1000X	SDS2000X
1	1 mV/div	2 mV/div
2	2 mV/div	5 mV/div
3	5 mV/div	10 mV/div
4	10 mV/div	20 mV/div
5	20 mV/div	50 mV/div
6	50 mV/div	100 mV/div
7	100 mV/div	200 mV/div
8	200 mV/div	500 mV/div
9	500 mV/div	1 V/div
10	1 V/div	2 V/div
11	2 V/div	5 V/div
12	5 V/div	10 V/div
13	10 V/div	

Calculate the Sample Rate

```
sample_rate = (wave_length) /(hori_div_num*time_div_val)
[example]
hori_div_num = 14 # total horizontal divisions, on SDS2000X is 14
wave_length = 700 pts # length of each frame. Could be got by calculating the length of the data section in the file
time_div_val = 50 ns/div # use the T/div index got from the binary file to search Table 2
So:
sample_rate = 700/(14*50e-9) = 1e9(Sa/s)
```

Calculate the Vertical Offset

```
vert_offset = (ch_vert_offset-220)*(ch_volt_div_val / pixel_per_div)
[example]
pixel_per_div = 50 # total display pixels in a vertical division, on SDS2000X is 50
ch_vert_offset = 270 # offset value, with the unit of pixel, got from the binary file
ch_volt_div_val = 50 mV/div # use the V/div index got from the binary file to search Table 3
So:
vert_offset = (270-220)/(50/50) = 50(mV)
```

Calculate the Time Delay

```
hori_offset_time = (time_offset-349)*(time_div_val / pixel_per_div)

[example]

pixel_per_div = 50 # total display pixels in a horizontal division, on SDS2000X is 50

time_offset = 299 # offset value, with the unit of pixel, got from the binary file

time_div_val = 50 ns/div # use the T/div index got from the binary file to search Table 2

So:

hori_offset_time = (299-349)*(50/50) = -50(ns)
```

Convert the Data to Voltage

```
voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]
code_per_div = 50 # total data code in a horizontal division, on SDS2000X is 25
data = 194 # got from the binary file
ch_volt_div_val = 5000 mV/div # V/div, in units of mV
ch_vert_offset = -7.7 V # vertical offset

So:
voltage = (194-128)*5000/1000/25+(-7.7) = 5.5(V)
```

V1 Binary without Version No(CH1_ON Starting address 0x44)

SDS1xx2X-E Before 1.3.20 || SDS1xx4X-E 6.1.20~6.1.25:

Update date: 2018-3-1

Table 4 Format of the Binary File

Parameter	Address	Description
time_div	0xa84-0xa93	Time div (time base) value, Such as 2.48
		ms/div.
		Unit of value, such as s from 0xa90-0xa93,
		refer to Table 6 for the details.
		Units of value's magnitude from 0xa8c-0xa8f,
		refer to Table 5 for the details.
		64-bit float point, data of value from

		0xa84-0xa8b
time_delay	0xa94-0xaa3	Time delay (Trigger delay) value, Such as 2.48
		ms.
		Unit of value, such as s from 0xaa0-0xaa3,
		refer to Table 6 for the details.
		Units of value's magnitude from 0xa9c-0xa9f,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0xa94-0xa9b.
wave_length	0xaa4-0xaa7	Wave length in units of sample points.
Cample rate	Ovane Ovala	32-bit integer
Sample_rate	0xaa8-0xab7	Sample Rate value, Such as 500M Sa/s. units of value's magnitude from 0xab0-0xab3,
		Refer to Table 6 for the details.
		64-bit float point, data of value from
		Oxaa8-Oxaaf.
ch1_on	0x44-0x47	on/off status of CH1, 1 - ON, 0 - OFF
_		32-bit signed integer, little endian.
ch1_volt_div_val	0x90-0x9f	V/div value of CH1, such as 2.48 mV/div.
		Unit of value, such as V from 0x9c-0x9f, refer
		to Table 6 for the details.
		Units of value's magnitude from 0x98-0x9b,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x90-0x97.
ch1_vert_offset	0xa0-0xaf	Offset value of CH1, such as 2.48 mV.
		Unit of value, such as V from 0xac-0xaf, refer
		to Table 6 for the details.
		Units of value's magnitude from 0xa8-0xab,
		refer to Table 5 for the details.
		64-bit float point, data of value from 0xa0-0xa7.
ch2_on	0xc0-0xc3	on/off status of CH2 32-bit integer
ch2_volt_div_val	0x10c-0x11b	V/div value of CH2, such as 2.48 mV/div.
		Unit of value, such as V from 0x118-0x11b,
		refer to Table 6 for the details.
		Units of value from 0x114-0x117, refer to
		Table 5 for the details.

	1	
		64-bit float point, data of value from 10c-0x113.
ch2_vert_offset	0x11c-0x12b	Offset value of CH2, such as 2.48 mV.
		Unit of value, such as V from 0x128-0x12b,
		refer to Table 6 for the details
		Units of value's magnitude from 0x124-0x127,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x11c-0x123
ch3_on	0x13c-0x13f	on/off status of CH3 32-bit integer
ch3_volt_div_val	0x188-0x197	V/div value of CH3, such as 2.48 mV/div.
		Unit of value, such as V from 0x194-0x197,
		refer to Table 6 for the details.
		Units of value's magnitude from 0x190-0x193
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x188-0x18f.
ch3_vert_offset	0x198-0x1a7	Offset value of CH3, such as 2.48 mV.
		Unit of value, such as V from 0x1a4-0x1a7,
		refer to Table 6 for the details.
		Units of value's magnitude from 0x1a0-0x1a3,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x198-0x19f.
ch4_on	0x1b8-0x1bb	on/off status of CH4 32-bit integer
ch4_volt_div_val	0x204-0x213	V/div value of CH4, such as 2.48 mV/div.
		Unit of value, such as V from 0x210-0x213,
		refer to Table 6 for the details.
		units of value's magnitude from 0x20c-0x20f,
		Refer to Table 5 for the details.
		64-bit float point,data of value from
		0x204-0x20b.
ch4_vert_offset	0x214-0x223	Offset value of CH4, such as 2.48 mV.
		Unit of value, such as V from 0x220-0x223,
		refer to Table 6 for the details
		Units of value's magnitude from 0x21c-0x21f,
		refer to Table 5 for the details
		64-bit float point, data of value from
		0x214-0x21b.
reserved	0x8a04-0x8a07	reserved
reserved	0x82f8-0x82fb	reserved
	L	l .

		8-bit unsigned integer for analog data
		the file.
		data of the enabled channel(s) are stored to
data	0x8a60-end	Data from analog channel 1 to channel 4. Only
reserved	0x8430-0x8433	reserved
reserved	0x842c-0x842f	reserved
reserved	0x8428-0x842b	reserved
reserved	0x8424-0x8427	reserved
reserved	0x8420-0x8423	reserved
reserved	0x841c-0x841f	reserved
reserved	0x8418-0x841b	reserved
reserved	0x8414-0x8417	reserved
reserved	0x8410-0x8413	reserved
reserved	0x840c-0x840f	reserved
reserved	0x8408-0x840b	reserved
reserved	0x8404-0x8407	reserved
reserved	0x8400-0x8403	reserved
reserved	0x83fc-0x83ff	reserved
reserved	0x83f8-0x83fb	reserved
reserved	0x83f4-0x83f7	reserved

Table 5 Magnitude Table

Index	SDS1000X-E
0	УОСТО
1	ZEPTO
2	ATTO
3	FEMTO
4	PICO
5	NANO
6	MICRO
7	MILLI
8	IU
9	KILO
10	MEGA
11	GIGA
12	TERA
13	PETA

Table 6 Units Table

Index	SDS1000X-E	Index	SDS1000X-E
0	V	14	S
1	Α	15	SA
2	VV	16	PTS
3	AA	17	NULL
4	ΟU	18	DB
5	W	19	DBV
6	SQRT_V	20	DBA
7	SQRT_A	21	VPP
8	INTEGRAL_V	22	VDC
9	INTEGRAL_A	23	DBM
10	DT_V		
11	DT_A		
12	DT_DIV		
13	Hz		

V2 Binary without Version No(CH1_ON Starting address 0x44, The starting address of tdiv has changed)

SDS1xx2X-E After 1.3.20

Update date: 2023-2-7

Table 5 Format of the Binary File

Parameter	Address	Description
time_div	0xdb8-0xdc7	Time div (time base) value, Such as 2.48
		ms/div.
		Unit of value, such as s from 0xdc3-0xdc7,
		refer to Table 6 for the details.
		Units of value's magnitude from 0xdc0-0xdc3,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0xdb8-0xdbf.
time_delay	0xdc8-0xdd7	Time delay (Trigger delay) value, Such as 2.48
		ms.
		Unit of value, such as s from 0xdd3-0xdd7,
		refer to Table 6 for the details.
		Units of value's magnitude from 0xdd0-0xdd3,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0xdc8-0xdcf.
wave_length	0xdd8-0xddb	Wave length in units of sample points.
		32-bit integer
Sample_rate	0xddc-0xdeb	Sample Rate value, Such as 500M Sa/s.
		units of value's magnitude from 0xde4-0xde7,
		Refer to Table 6 for the details.
		64-bit float point, data of value from
		0xddc-0xde3.
ch1_on	0x44-0x47	on/off status of CH1, 1 - ON, 0 - OFF
		32-bit signed integer, little endian.
ch1_volt_div_val	0xb4-0xc3	V/div value of CH1, such as 2.48 mV/div.
		Unit of value, such as V from 0xc0-0xc3, refer
		to Table 6 for the details.
		Units of value's magnitude from 0xbc-0xbf,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0xb4-0xbb.
ch1_vert_offset	0xc4-0xd3	Offset value of CH1, such as 2.48 mV.
		Unit of value, such as V from 0xd0-0xd3, refer
		to Table 6 for the details.
		Units of value's magnitude from 0xcc-0xcf,
		refer to Table 5 for the details.
		64-bit float point, data of value from

		0xc4-0xcb.
ch2_on	0xe8-0xeb	on/off status of CH2 32-bit integer
ch2_volt_div_val	0x158-0x167	V/div value of CH2, such as 2.48 mV/div.
cnz_voit_div_vai	0/130 0/107	Unit of value, such as V from 0x164-0x167,
		refer to Table 6 for the details.
		Units of value from 0x160-0x163, refer to
		Table 5 for the details.
		64-bit float point, data of value from
		0x158-0x15f.
ch2_vert_offset	0x168-0x177	Offset value of CH2, such as 2.48 mV.
		Unit of value, such as V from 0x174-0x177,
		refer to Table 6 for the details
		Units of value's magnitude from 0x170-0x173,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x168-0x16f
ch3_on	0x18c-0x18f	on/off status of CH3 32-bit integer
ch3_volt_div_val	0x1fc-0x20b	V/div value of CH3, such as 2.48 mV/div.
		Unit of value, such as V from 0x207-0x20b,
		refer to Table 6 for the details.
		Units of value's magnitude from 0x204-0x207
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x1fc-0x203.
ch3_vert_offset	0x20c-0x21b	Offset value of CH3, such as 2.48 mV.
		Unit of value, such as V from 0x217-0x21b,
		refer to Table 6 for the details.
		Units of value's magnitude from 0x214-0x217,
		refer to Table 5 for the details.
		64-bit float point, data of value from
		0x20c-0x213.
ch4_on	0x230-0x233	on/off status of CH4 32-bit integer
ch4_volt_div_val	0x2a0-0x2af	V/div value of CH4, such as 2.48 mV/div.
		Unit of value, such as V from 0x2ab-0x2af,
		refer to Table 6 for the details.
		units of value's magnitude from 0x2a8-0x2aa,
		Refer to Table 5 for the details.
		64-bit float point,data of value from
		0x2a0-0x2a7.
ch4_vert_offset	0x2b0-0x2bf	Offset value of CH4, such as 2.48 mV.
		Unit of value, such as V from 0x2bb-0x2bf,

		refer to Table 6 for the details Units of value's magnitude from 0x2b8-0x2ba,
		refer to Table 5 for the details
		64-bit float point, data of value from
		0x2b0-0x2b7.
reserved	0x8a04-0x8a07	reserved
reserved	0x82f8-0x82fb	reserved
reserved	0x83f4-0x83f7	reserved
reserved	0x83f8-0x83fb	reserved
reserved	0x83fc-0x83ff	reserved
reserved	0x8400-0x8403	reserved
reserved	0x8404-0x8407	reserved
reserved	0x8408-0x840b	reserved
reserved	0x840c-0x840f	reserved
reserved	0x8410-0x8413	reserved
reserved	0x8414-0x8417	reserved
reserved	0x8418-0x841b	reserved
reserved	0x841c-0x841f	reserved
reserved	0x8420-0x8423	reserved
reserved	0x8424-0x8427	reserved
reserved	0x8428-0x842b	reserved
reserved	0x842c-0x842f	reserved
reserved	0x8430-0x8433	reserved
data	0x932c-end	Data from analog channel 1 to channel 4. Only
		data of the enabled channel(s) are stored to
		the file.
		8-bit unsigned integer for analog data

Table 8 Magnitude Table

Index	SDS1000X-E
0	УОСТО
1	ZEPTO
2	ATTO
3	FEMTO
4	PICO
5	NANO
6	MICRO
7	MILLI
8	IU
9	KILO
10	MEGA
11	GIGA
12	TERA
13	PETA

Table 9 Units Table

Index	SDS1000X-E	Index	SDS1000X-E
0	V	14	S
1	Α	15	SA
2	VV	16	PTS
3	AA	17	NULL
4	ου	18	DB
5	W	19	DBV
6	SQRT_V	20	DBA
7	SQRT_A	21	VPP
8	INTEGRAL_V	22	VDC
9	INTEGRAL_A	23	DBM
10	DT_V		
11	DT_A		
12	DT_DIV		
13	Hz		

Convert the Data to Voltage

voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
[example]
code_per_div = 50 # total data code in a horizontal division, on SDS1000X-E is 25

```
data = 194  # got from the binary file

ch_volt_div_val = 5000 \text{ mV/div}  # V/div, in units of mV

ch_vert_offset = -7.7 \text{ V}  # vertical offset

So:

voltage = (194-128) * 5000/1000/25+(-7.7) = 5.5 \text{ V}
```

Binary V2.0 (scp_data_unit 16 bytes)

SDS1xx4X-E After 6.1.26 || SDS2000X-E After 1.1.8 || SDS5000X 0.6.7 $^{\sim}$ 0.8.5R2 || SDS2000X PLUS 1.1.6 $^{\sim}$ 1.2.3

Update date: 2018-6-15

Table 1 Format of the Binary File

Parameter	Address	Description
ch1_on	0x00-0x03	on/off status of CH1, 1 - ON, 0 - OFF 32-bit signed integer.
ch2_on	0x04-0x07	on/off status of CH2, 1 - ON, 0 - OFF 32-bit integer
ch3_on	0x08-0x0b	on/off status of CH3, 1 - ON, 0 - OFF 32-bit integer
ch4_on	0x0c-0x0f	on/off status of CH4, 1 - ON, 0 - OFF 32-bit integer
ch1_volt_div_val	0x10-0x1f	V/div value of CH1, such as 2.48 mV/div. Unit of value, such as V from 0x1c-0x1f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x18-0x1b, refer to Table for the details. 64-bit float point, data of value from 0x10-0x17.

ch2_volt_div_val	0x20-0x2f	V/div value of CH2, such as 2.48 mV/div. Unit of value, such as V from 0x2c-0x2f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x28-0x2b, refer to Table for the details. 64-bit float point, data of value from 0x20-0x27. V/div value of CH3, such as 2.48 mV/div.
CHS_VOIL_div_vai	0.30-0.31	Unit of value, such as V from 0x3c-0x3f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x38-0x3b, refer to Table for the details. 64-bit float point, data of value from 0x30-0x37.
ch4_volt_div_val	0x40-0x4f	V/div value of CH4, such as 2.48 mV/div. Unit of value, such as V from 0x4c-0x4f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x48-0x4b, refer to Table for the details. 64-bit float point, data of value from 0x40-0x47.
ch1_vert_offset	0x50-0x5f	Offset value of CH1, such as 2.48 mV. Unit of value, such as V from 0x5c-0x5f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x58-0x5b, refer to Table for the details. 64-bit float point, data of value from 0x50-0x57.
ch2_vert_offset	0x60-0x6f	Offset value of CH2, such as 2.48 mV. Unit of value, such as V from 0x6c-0x6f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x68-0x6b, refer to Table for the details. 64-bit float point, data of value from 0x60-0x67.
ch3_vert_offset	0x70-0x7f	Offset value of CH3, such as 2.48 mV. Unit of value, such as V from 0x7c-0x7f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x78-0x7b, refer to Table for the details. 64-bit float point, data of value from 0x70-0x77.

ch4_vert_offset digital_on	0x80-0x8f 0x90-0x93	Offset value of CH4, such as 2.48 mV. Unit of value, such as V from 0x8c-0x8f, refer to Table for the details. Units of value's magnitude (MICRO) from 0x88-0x8b, refer to Table for the details. 64-bit float point, data of value from 0x80-0x87. on/off status of digital, 1 - ON, 0 - OFF 32-bit integer
d0_d15_on	0x94-0xd3	on/off status of d0-d15, 1 - ON, 0 - OFF 32-bit integer d0:0x94-0x97
time_div	0xd4-0xe3	Time div (time base) value, Such as 2.48 ms/div. Unit of value, such as s from 0xe0-0xe3, refer to Table for the details. Units of value's magnitude (MICRO) from 0xdc-0xdf, refer to Table for the details. 64-bit float point, data of value from 0xd4-0xdb.
time_delay	0xe4-0xf3	Time delay (Trigger delay) value, Such as 2.48 ms. Unit of value, such as s from 0xf0-0xf3, refer to Table for the details. Units of value's magnitude (MICRO) from 0xec-0xef, refer to Table for the details. 64-bit float point, data of value from 0xe4-0xeb
wave_length	0xf4-0xf7	Wave length of the data points for analog channel. 32-bit integer

Sample_rate digital_wave_length	0xf8-0x107 0x108-0x10b	Sample Rate value for analog channel, Such as 500M Sa/s. Unit of value, such as Sa from 0x104-0x107, refer to Table for the details. Units of value's magnitude (MEGA) from 0x100-0x103, Refer to Table for the details. 64-bit float point, data of value from 0xf8-0xff. Wave length of the data points for digital. 32-bit integer
digital_sample_rate	0x10c-0x11b	Sample Rate value for digital, Such as 500M Sa/s. Unit of value, such as Sa from 0x118-0x11b, refer to Table for the details. Units of value's magnitude (MEGA) from 0x114-0x117, Refer to Table for the details. 64-bit float point, data of value from 0x10c-0x113.
reserved	0x11c~	reserved
***	•••	
reserved	~0x7ff	reserved
Wave_data	0x800-end	Data from CH1 to D15. Only data of the enabled channel(s) are stored to the file. I.E. if there are data of all channels(Ch1 to D15), and wave_length from 0xf4-0xf7 is 700(0x2bc). Data of CH1 is from 0x800 to 0xabb. Data of CH2 is from 0xabc to 0xd77. CH3 and CH4 are the same. Next block is the data of D0. The data length (digital_wave_length) from 0x108-0x10b is 1400. Data of D0 is from 0x12f0 to 0x1867. D1~D15 are the same.

Table 2 Magnitude Table

Index	Magnitude	Index	Magnitude
0	УОСТО	7	MILLI

Index	Magnitude	Index	Magnitude
1	ZEPTO	8	U
2	ATTO	9	KILO
3	FEMTO	10	MEGA
4	PICO	11	GIGA
5	NANO	12	TERA
6	MICRO	13	PETA

Table 3 Units Table

Index	Unit	Index	Unit
0	V	12	DT_DIV
1	А	13	Hz
2	VV	14	S
3	AA	15	SA
4	ου	16	PTS
5	W	17	NULL
6	SQRT_V	18	DB
7	SQRT_A	19	DBV
8	INTEGRAL_V	20	DBA
9	INTEGRAL_A	21	VPP
10	DT_V	22	VDC
11	DT_A	23	DBM

Convert the Data to Voltage

```
voltage = (data-128) * ch_volt_div_val /1000/code_per_div + ch_vert_offset

[example]
code_per_div = 25  # total data code in a horizontal division, on SDS1000X is 25
data = 194  # got from the binary file
ch_volt_div_val = 5000 mV/div  # V/div, in units of mV
ch_vert_offset = -7.7 V  # vertical offset

So:
voltage = (194-128) * 5000/1000/25+(-7.7) = 5.5 V
```

Calculate the Time Value of the Data

```
time value(S) = -( time_div *grid /2)+index*(1/ Sample_rate)

[example]
grid = 14  # The grid numbers in horizontal direction
time_div = 2 us  # s/div, in units of us
Sample_rate = 1 GSa/s  # Sa/s, in units of GSa/s

So:
The time value of the first point: -(2e-6*14/2)+0*(1/1e9) = -14e-6 s.
The time value of the second point: -(2e-6*14/2)+1*(1/1e9) = -14.001e-6 s.
```

Binary V3.0 (Added 40 bytes for Bin version and scp_data_unit)

SDS5000X 0.8.6~0.9.3Rx || SDS2000X PLUS After 1.2.6 || SDS6000 before 1.2.2.0 Update date: 2019-7-22

Table 7 Format of the Binary File

Parameter	Address	Description
version	0x00-0x03	Version number of the file.
		0 or 1,use V2.0 to extract data.
		2,use V3.0 to extract data.
ch1_on	0x04-0x07	on/off status of CH1, 1 - ON, 0 - OFF
		32-bit signed integer.
ch2_on	0x08-0x0b	on/off status of CH2, 1 - ON, 0 - OFF
		32-bit integer
ch3_on	0x0c-0x0f	on/off status of CH3, 1 - ON, 0 - OFF
		32-bit integer

ch4_on	0x10-0x13	on/off status of CH4, 1 - ON, 0 - OFF 32-bit integer
ch1_volt_div_val	0x14-0x3b	V/div value of CH1, such as 2.48 mV/div. Unit of value, such as V from 0x20-0x3b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x1c-0x1f, refer to Table 8 for the details. 64-bit float point, data of value from 0x14-0x1b.
ch2_volt_div_val	0x3c-0x63	V/div value of CH2, such as 2.48 mV/div. Unit of value, such as V from 0x48-0x63, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x44-0x47, refer to Table 8 for the details. 64-bit float point, data of value from 0x3c-0x43.
ch3_volt_div_val	0x64-0x8b	V/div value of CH3, such as 2.48 mV/div. Unit of value, such as V from 0x70-0x8b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x6c-0x6f, refer to Table 8 for the details. 64-bit float point, data of value from 0x64-0x6b.
ch4_volt_div_val	0x8c-0xb3	V/div value of CH4, such as 2.48 mV/div. Unit of value, such as V from 0x98-0xb3, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x94-0x97, refer to Table 8 for the details. 64-bit float point, data of value from 0x8c-0x93.
ch1_vert_offset	0xb4xdb	Offset value of CH1, such as 2.48 mV. Unit of value, such as V from 0xc0-0xdb, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0xbc-0xbf, refer to Table 8 for the details. 64-bit float point, data of value from 0xb4-0xbb.

	1	
ch2_vert_offset	0xdc-0x103	Offset value of CH2, such as 2.48 mV. Unit of value, such as V from 0xe8-0x103, refer
		to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0xe4-0xe7, refer to Table 8 for the details.
		64-bit float point, data of value from
		0xdc-0xe3.
ch3_vert_offset	0x104-0x12b	Offset value of CH3, such as 2.48 mV.
		Unit of value, such as V from 0x110-0x12b,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x10c-0x10f, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x104-0x10b.
ch4_vert_offset	0x12c-0x153	Offset value of CH4, such as 2.48 mV.
		Unit of value, such as V from 0x138-0x153,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x134-0x137, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x12c-0x133.
digital_on	0x154-0x157	on/off status of digital, 1 - ON, 0 - OFF
		32-bit integer
d0_d15_on	0x158-0x197	on/off status of d0-d15, 1 - ON, 0 - OFF
40_413_611	OXISO OXIST	32-bit integer
		d0:0x158-0x15b d8: 0x178-0x17b
		d1: 0x15c-0x15f d9: 0x17c-0x17f
		d2: 0x160-0x163 d10: 0x180-0x183
		d3: 0x164-0x167 d11: 0x184-0x187
		d4: 0x168-0x16b d12: 0x188-0x18b
		d5: 0x16c-0x16f d13: 0x18c-0x18f
		d6: 0x170-0x173 d14: 0x190-0x193
		d7: 0x174-0x177 d15: 0x194-0x197
time_div	0x198-0x1bf	Time div (time base) value, Such as 2.48
unie_uiv	OVI 30-OVIDI	ms/div.
		,
		Unit of value, such as s from 0x1a3-0x1bf,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x1a0-0x1a3, refer to Table 8 for the details.

		64-bit float point, data of value from 0x198-0x19f.
time_delay	0x1c0-0x1e7	Time delay (Trigger delay) value, Such as 2.48 ms. Unit of value, such as s from 0x1cc-0x1e7, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x1c8-0x1cb, refer to Table 8 for the details. 64-bit float point, data of value from 0x1c0-0x1c7
wave_length	0x1e8-0x1eb	Wave length of the data points for analog channel. 32-bit integer
Sample_rate	0x1ec-0x213	Sample Rate value for analog channel, Such as 500M Sa/s. Unit of value, such as Sa from 0x1f8-0x213, refer to Table 9 for the details. Units of value's magnitude (MEGA) from 0x1f4-0x1f7, Refer to Table 8 for the details. 64-bit float point, data of value from 0x1ec-0x1f3.
digital_wave_length	0x214-0x217	Wave length of the data points for digital. 32-bit integer
digital_sample_rate	0x208-0x23f	Sample Rate value for digital, Such as 500M Sa/s. Unit of value, such as Sa from 0x214-0x23f, refer to Table 9 for the details. Units of value's magnitude (MEGA) from 0x210-0x213, Refer to Table 8 for the details. 64-bit float point, data of value from 0x208-0x20f.
ch1_probe	0x240-0x247	Probe value of CH1,64-bit float point

ch2_probe	0x248-0x24f	Probe value of CH2,64-bit float point
ch3_probe	0x250-0x257	Probe value of CH3,64-bit float point
ch4_probe	0x258-0x25f	Probe value of CH4,64-bit float point
Data width	0x260	Data width of the waveform data, 0 – 8-bit, 1 – 16-bit, 8-bit unsigned integer
reserved	0x261~	reserved
reserved	~0x7ff	reserved
Wave_data	0x800-end	Data from CH1 to D15. Only data of the enabled channel(s) are stored to the file. I.E. If there are data of all channels(Ch1 to D15), wave_length from 0x1e8-0x1eb is 700(0x2bc).,and data width from 0x260 is 0(8-bit). Data of CH1 is from 0x800 to 0xabb. Data of CH2 is from 0xabc to 0xd77. CH3 and CH4 are the same. Next block is the data of D0. The data length (digital_wave_length) from 0x214-0x217 is 1400. Data of D0 is from 0x12f0 to 0x1867. D1~D15 are the same.

Table 8 Magnitude Table

Index	Magnitude	Index	Magnitude
0	УОСТО	9	KILO

Index	Magnitude	Index	Magnitude
1	ZEPTO	10	MEGA
2	ATTO	11	GIGA
3	FEMTO	12	TERA
4	PICO	13	PETA
5	NANO	14	EXA
6	MICRO	15	ZETTA
7	MILLI	16	YOTTA
8	IU		

Table 9 Units Table

First 32-bit is basic unit type:

Index	Unit	Index	Unit
0	Is composed of V,A and S.	8	DT_DIV
1	DBV	9	PTS
2	DBA	10	NULL_SENSE
3	DB	11	DEGREE
4	VPP	12	PERCENT
5	VDC		
6	DBM		
7	SA		

The next 64-bit describes the power of V, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of A, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of S, in which the first half represents the numerator and the next half represents the denominator.

For example, {0,1,1,0,1,0,1} represents the unit V. The first number 0 means the unit is composed of V,A and S. The second number 1 and the third number 1 mean the power of V is 1/1. The fourth number 0 and the fifth number 1 mean the power of A is 0/1. The sixth number 0 and the seventh number 1 mean the power of S is 0/1. So the unit is V.

Convert the Data to Voltage

```
voltage = (data- Data_width) * ch_volt_div_val /1000/code_per_div + ch_vert_offset
```

[example]

code_per_div = 25 # total data code in a horizontal division, Take the corresponding

channel's code_per_div C1- ch1_vert_code_per_div.

data = 194 # got from the binary file

Calculate the Time Value of the Data

```
time value(S) = -( time_div *grid /2)+index*(1/ Sample_rate)

[example]
grid = 14  # The grid numbers in horizontal direction
time_div = 2 us  # s/div, in units of us
Sample_rate = 1 GSa/s  # Sa/s, in units of GSa/s

So:
The time value of the first point: -(2e-6*14/2)+0*(1/1e9) = -14e-6 s.
The time value of the second point: -(2e-6*14/2)+1*(1/1e9) = -14.001e-6 s.
```

Binary V3.1 (Add Byte order, Hori_divnum, code, math parameters)

SDS5000X After 0.9.5 || SDS6000 After 1.2.2.0 Update date: 2021-4-28

Table 7 Format of the Binary File

Parameter	Address	Description
version	0x00-0x03	Version number of the file.
		0 or 1,use V2.0 to extract data.
		2,use V3.0 to extract data.
ch1_on	0x04-0x07	on/off status of CH1, 1 - ON, 0 - OFF
		32-bit signed integer.
ch2_on	0x08-0x0b	on/off status of CH2, 1 - ON, 0 - OFF
		32-bit integer

ch3_on	0x0c-0x0f	on/off status of CH3, 1 - ON, 0 - OFF 32-bit integer
ch4_on	0x10-0x13	on/off status of CH4, 1 - ON, 0 - OFF 32-bit integer
ch1_volt_div_val	0x14-0x3b	V/div value of CH1, such as 2.48 mV/div. Unit of value, such as V from 0x20-0x3b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x1c-0x1f, refer to Table 8 for the details. 64-bit float point, data of value from 0x14-0x1b.
ch2_volt_div_val	0x3c-0x63	V/div value of CH2, such as 2.48 mV/div. Unit of value, such as V from 0x48-0x63, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x44-0x47, refer to Table 8 for the details. 64-bit float point, data of value from 0x3c-0x43.
ch3_volt_div_val	0x64-0x8b	V/div value of CH3, such as 2.48 mV/div. Unit of value, such as V from 0x70-0x8b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x6c-0x6f, refer to Table 8 for the details. 64-bit float point, data of value from 0x64-0x6b.
ch4_volt_div_val	0x8c-0xb3	V/div value of CH4, such as 2.48 mV/div. Unit of value, such as V from 0x98-0xb3, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x94-0x97, refer to Table 8 for the details. 64-bit float point, data of value from 0x8c-0x93.
ch1_vert_offset	0xb4-xdb	Offset value of CH1, such as 2.48 mV. Unit of value, such as V from 0xc0-0xdb, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0xbc-0xbf, refer to Table 8 for the details. 64-bit float point, data of value from 0xb4-0xbb.

ch2_vert_offset ch3_vert_offset	0xdc-0x103 0x104-0x12b	Offset value of CH2, such as 2.48 mV. Unit of value, such as V from 0xe8-0x103, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0xe4-0xe7, refer to Table 8 for the details. 64-bit float point, data of value from 0xdc-0xe3. Offset value of CH3, such as 2.48 mV.	
		Unit of value, such as V from 0x110-0x12b, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x10c-0x10f, refer to Table 8 for the details. 64-bit float point, data of value from 0x104-0x10b.	
ch4_vert_offset	0x12c-0x153	Offset value of CH4, such as 2.48 mV. Unit of value, such as V from 0x138-0x153, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x134-0x137, refer to Table 8 for the details. 64-bit float point, data of value from 0x12c-0x133.	
digital_on	0x154-0x157	on/off status of digital, 1 - ON, 0 - OFF 32-bit integer	
d0_d15_on	0x158-0x197	on/off status of d0-d15, 1 - ON, 0 - OFF 32-bit integer d0:0x158-0x15b	
time_div	0x198-0x1bf	Time div (time base) value, Such as 2.48 ms/div. Unit of value, such as s from 0x1a3-0x1bf, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x1a0-0x1a3, refer to Table 8 for the details. 64-bit float point, data of value from 0x198-0x19f.	

time_delay	0x1c0-0x1e7	Time delay (Trigger delay) value, Such as 2.48 ms. Unit of value, such as s from 0x1cc-0x1e7, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x1c8-0x1cb, refer to Table 8 for the details. 64-bit float point, data of value from 0x1c0-0x1c7
wave_length	0x1e8-0x1eb	Wave length of the data points for analog channel. 32-bit integer
Sample_rate	0x1ec-0x213	Sample Rate value for analog channel, Such as 500M Sa/s. Unit of value, such as Sa from 0x1f8-0x213, refer to Table 9 for the details. Units of value's magnitude (MEGA) from 0x1f4-0x1f7, Refer to Table 8 for the details. 64-bit float point, data of value from 0x1ec-0x1f3.
digital_wave_length	0x214-0x217	Wave length of the data points for digital. 32-bit integer
digital_sample_rate	0x208-0x23f	Sample Rate value for digital, Such as 500M Sa/s. Unit of value, such as Sa from 0x214-0x23f, refer to Table 9 for the details. Units of value's magnitude (MEGA) from 0x210-0x213, Refer to Table 8 for the details. 64-bit float point, data of value from 0x208-0x20f.
ch1_probe	0x240-0x247	Probe value of CH1,64-bit float point
ch2_probe	0x248-0x24f	Probe value of CH2,64-bit float point
ch3_probe	0x250-0x257	Probe value of CH3,64-bit float point
ch4_probe	0x258-0x25f	Probe value of CH4,64-bit float point
Data width	0x260	Data width of the waveform data, 0 – 8-bit, 1 – 16-bit, 8-bit unsigned integer

Byte order	0x261	Byte order of the waveform data, 0 – LSB, 1 – MSB, 8-bit unsigned integer	
Hori_div_num	0x268-0x26b	Hori div num,32-bit signed integer	
ch1_vert_code_per_div	0x26c-0x26f	Vertical code number per div of CH1,32-bit signed integer	
ch2_vert_code_per_div	0x270-0x273	Vertical code number per div of CH2,32-bit signed integer	
ch3_vert_code_per_div	0x274-0x277	Vertical code number per div of CH3,32-bit signed integer	
ch4_vert_code_per_div	0x278-0x27b	Vertical code number per div of CH4,32-bit signed integer	
math1_switch	0x27c-0x27f	on/off status of math1, 1 - ON, 0 - OFF 32-bit signed integer.	
math2_switch	0x280-0x283	on/off status of math2, 1 - ON, 0 - OFF 32-bit signed integer.	
math3_switch	0x284-0x287	on/off status of math3, 1 - ON, 0 - OFF 32-bit signed integer.	
math4_switch	0x288-0x28b	on/off status of math4, 1 - ON, 0 - OFF 32-bit signed integer.	
math1_vdiv_val	0x28c-0x2b3	V/div value of math1, such as 2.48 mV/div. Unit of value, such as V from 0x298-0x2b3, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x294-0x297, refer to Table 8 for the details. 64-bit float point, data of value from 0x28c-0x293.	
math2_vdiv_val	0x2b4-0x2db	V/div value of math2, such as 2.48 mV/div. Unit of value, such as V from 0x2c0-0x2db, refer to Table 9 for the details. Units of value's magnitude (MICRO) from 0x2bc-0x2bf, refer to Table 8 for the details. 64-bit float point, data of value from 0x2b4-0x2bb.	

math3_vdiv_val	0x2dc-0x303	V/div value of math3, such as 2.48 mV/div.
		Unit of value, such as V from 0x2e8-0x303,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x2e4-0x2e7, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x2dc-0x2e3.
math4_vdiv_val	0x304-0x32b	V/div value of math2, such as 2.48 mV/div.
		Unit of value, such as V from 0x310-0x32b,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x30c-0x30f, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x304-0x30b.
math1_vpos_val	0x32c-0x353	Offset value of math1, such as 2.48 mV/div.
		Unit of value, such as V from 0x338-0x353,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x334-0x337, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x32c-0x333.
math2_vpos_val	0x354-0x37b	Offset value of math2, such as 2.48 mV/div.
		Unit of value, such as V from 0x360-0x37b,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x35c-0x35f, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x354-0x35b.
math3_vpos_val	0x37c-0x3a3	Offset value of math3, such as 2.48 mV/div.
		Unit of value, such as V from 0x388-0x3a3,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x384-0x387, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x37c-0x383.
math4_vpos_val	0x3a4-0x3cb	Offset value of math2, such as 2.48 mV/div.
		Unit of value, such as V from 0x3b0-0x3cb,
		refer to Table 9 for the details.
		Units of value's magnitude (MICRO) from
		0x3ac-0x3af, refer to Table 8 for the details.
		64-bit float point, data of value from
		0x3a4-0x3ab.

math1_store_len	0x3cc-0x3cf	Wave length of the data points for math1. 32-bit unsigned integer	
math2_store_len	0x3d0-0x3d3	Wave length of the data points for math2. 32-bit unsigned integer	
math3_store_len	0x3d4-0x3d7	Wave length of the data points for math3. 32-bit unsigned integer	
math4_store_len	0x3d8-0x3db	Wave length of the data points for math4. 32-bit unsigned integer	
math1_f_time	0x3dc-0x3e3	Sample interval between two points of math1. 64-bit float point	
math2_f_time	0x3e4-0x3eb	Sample interval between two points of math2. 64-bit float point	
math3_f_time	0x3ec-0x3f3	Sample interval between two points of math3. 64-bit float point	
math4_f_time	0x3f4-0x3fb	Sample interval between two points of math4. 64-bit float point	
math_vert_code_per_div	0x3fc-0x3ff	Vertical code number per div of math,32-bit integer	
reserved	0x400~	reserved	
	•••		
reserved	~0x7ff	reserved	
Wave_data	0x800-end	Data from CH1 to D15. Only data of the enabled channel(s) are stored to the file. I.E. If there are data of all channels(Ch1 to D15), wave_length from 0x1e8-0x1eb is 700(0x2bc).,and data width from 0x260 is 0(8-bit). Data of CH1 is from 0x800 to 0xabb. Data of CH2 is from 0xabc to 0xd77. CH3 and CH4 are the same.	

Next block is the data of math1, wave length
from 0x3cc-0x3cf is 700(0x2bc).,and data
, , , , ,
width from 0x260 is 0(8-bit).
Data of math1 is from 0x12f0 to 0x15ab.
Data of math 2 is from 0x15ac to 0x1867.
math 3 and math 4 are the same.
Next block is the data of D0. The data length
(digital_wave_length) from 0x214-0x217 is
1400.
Data of D0 is from 0x1de0 to 0x1e8e.
D1~D15 are the same.

Table 8 Magnitude Table

Index	Magnitude	Index	Magnitude
0	YOCTO	9	KILO
1	ZEPTO	10	MEGA
2	ATTO	11	GIGA
3	FEMTO	12	TERA
4	PICO	13	PETA
5	NANO	14	EXA
6	MICRO	15	ZETTA
7	MILLI	16	YOTTA
8	IU		

Table 9 Units Table

First 32-bit is basic unit type:

Index	Unit	Index	Unit
0	Is composed of V,A and S.	8	DT_DIV
1	DBV	9	PTS
2	DBA	10	NULL_SENSE
3	DB	11	DEGREE
4	VPP	12	PERCENT
5	VDC		
6	DBM		
7	SA		

The next 64-bit describes the power of V, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of A, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of S, in which the first half represents the numerator and the next half represents the denominator.

For example, {0,1,1,0,1,0,1} represents the unit V. The first number 0 means the unit is composed of V,A and S. The second number 1 and the third number 1 mean the power of V is 1/1. The fourth number 0 and the fifth number 1 mean the power of A is 0/1. The sixth number 0 and the seventh number 1 mean the power of S is 0/1. So the unit is V.

Convert the Data to Voltage

Calculate the Time Value of the Data

Binary V4.0 (Add data_offset_byte and memory parameters)

SDS800XHD || SDS1000XHD || SDS2000XHD || SDS2000X PLUS(1.5.2&later) || SDS3000XHD || SDS5000X(0.9.6&later) || SDS6000(1.4.1.0&later) || SDS7000 Update date: 2022-1-17

Table 1 Format of the Binary File

Parameter	Address	Description	
version	0x00-0x03	Version number of the file.	
		4,use this block.	
data_offset_byte	0x04-0x07	Offset of wave data in this file.	
		32-bit integer.	
ch1_on	0x08-0x0b	on/off status of CH1, 1 - ON, 0 - OFF	
		32-bit signed integer.	
ch2_on	0x0c-0x0f	on/off status of CH2, 1 - ON, 0 - OFF	
		32-bit integer	
ch3_on	0x10-0x13	on/off status of CH3, 1 - ON, 0 - OFF	
		32-bit integer	
ch4_on	0x14-0x17	on/off status of CH4, 1 - ON, 0 - OFF	
		32-bit integer	
ch1_volt_div_val	0x18-0x3f	V/div value of CH1, such as 2.48 mV/div.	
		Data With Unit, refer to <u>Table2</u> for the	
		details.	
ch2_volt_div_val	0x40-0x67	V/div value of CH2, such as 2.48 mV/div.	
		Data With Unit, refer to <u>Table2</u> for the details.	
		uetalis.	
ch3 volt div val	0x68-0x8f	V/div value of CH3, such as 2.48 mV/div.	
		Data With Unit, refer to <u>Table2</u> for the	
		details.	
ch3_volt_div_val	0x68-0x8f		

ch4_volt_div_val	0x90-0xb7	V/div value of CH4, such as 2.48 mV/div. Data With Unit, refer to Table2 for the details.	
ch1_vert_offset	0xb8-0xdf	Offset value of CH1, such as 2.48 mV. Data With Unit, refer to Table2 for the details.	
ch2_vert_offset	0xe0-0x107	Offset value of CH2, such as 2.48 mV. Data With Unit, refer to Table2 for the details.	
ch3_vert_offset	0x108-0x12f	Offset value of CH3, such as 2.48 mV. Data With Unit, refer to Table2 for the details.	
ch4_vert_offset	0x130-157	Offset value of CH4, such as 2.48 mV. Data With Unit, refer to Table2 for the details.	
digital_on	0x158-0x15b	on/off status of digital, 1 - ON, 0 - OFF 32-bit integer	
d0_d15_on	0x15c-0x19b	on/off status of d0-d15, 1 - ON, 0 - OFF Array of 16 32-bit integer	
time_div	0x19c-0x1c3	Time div (time base) value, Such as 2.48 ms/div. Data With Unit, refer to Table2 for the details.	
time_delay	0x1c4-0x1eb	Time delay (Trigger delay) value, Such as 2.48 ms. Data With Unit, refer to Table2 for the details.	
wave_length	0x1ec-0x1ef	Wave length of the data points for analog channel. 32-bit integer	

Sample_rate	0x1f0-0x217	Sample Rate value for analog channel, Such as 500M Sa/s. Data With Unit, refer to Table2 for the details.	
digital_wave_length	0x218-0x21b	Wave length of the data points for digital. 32-bit integer	
digital_sample_rate	0x21c-0x243	Sample Rate value for digital, Such as 500M Sa/s. Data With Unit, refer to Table2 for the details.	
ch1_probe	0x244-0x24b	Probe value of CH1,64-bit float point	
ch2_probe	0x24c-0x253	Probe value of CH2,64-bit float point	
ch3_probe	0x254-0x25b	Probe value of CH3,64-bit float point	
ch4_probe	0x25c-0x263	Probe value of CH4,64-bit float point	
Data width	0x264	Data width of the waveform data, 0 – 8-bit, 1 – 16-bit, 8-bit unsigned integer	
Byte order	0x265	Byte order of the waveform data, 0 – LSB, 1 – MSB, 8-bit unsigned integer	
Hori_div_num	0x26c-0x26f	Hori div num,32-bit signed integer	
ch1_vert_code_per_div	0x270-0x273	Vertical code number per div of CH1,32-bit signed integer	
ch2_vert_code_per_div	0x274-0x277	Vertical code number per div of CH2,32-bi signed integer	
ch3_vert_code_per_div	0x278-0x27b	Vertical code number per div of CH3,32-bi signed integer	
ch4_vert_code_per_div	0x27c-0x27f	Vertical code number per div of CH4,32-bit signed integer	
math1_switch	0x280-0x283	on/off status of math1, 1 - ON, 0 - OFF 32-bit signed integer.	

math2_switch	0x284-0x287	on/off status of math2, 1 - ON, 0 - OFF	
indinz_switch	ONZO I ONZO	32-bit signed integer.	
math3_switch	0x288-0x28b	on/off status of math3, 1 - ON, 0 - OFF 32-bit signed integer.	
math4_switch	0x28c-0x28f	on/off status of math4, 1 - ON, 0 - OFF 32-bit signed integer.	
math1_vdiv_val	0x290-0x2b7	V/div value of math1, such as 2.48 mV/div. Data With Unit, refer to Table2 for the details.	
math2_vdiv_val	0x2b8-0x2df	V/div value of math2, such as 2.48 mV/div. Data With Unit, refer to Table2 for the details.	
math3_vdiv_val	0x2e0-0x307	V/div value of math3, such as 2.48 mV/div. Data With Unit, refer to Table2 for the details.	
math4_vdiv_val	0x308-0x32f	V/div value of math4, such as 2.48 mV/div. Data With Unit, refer to Table2 for the details.	
math1_vpos_val	0x330-0x357	Offset value of math1, such as 2.5V. Data With Unit, refer to Table2 for the details.	
math2_vpos_val	0x358-0x37f	Offset value of math2, such as 2.5V. Data With Unit, refer to Table2 for the details.	
math3_vpos_val	0x380-0x3a7	Offset value of math3, such as 2.5V. Data With Unit, refer to Table2 for the details.	
math4_vpos_val	0x3a8-0x3cf	Offset value of math4, such as 2.5V. Data With Unit, refer to <u>Table2</u> for the details.	

math1_store_len	0x3d0-0x3d3	Wave length of the data points for math1. 32-bit unsigned integer	
math2_store_len	0x3d4-0x3d7	Wave length of the data points for math2. 32-bit unsigned integer	
math3_store_len	0x3d8-0x3db	Wave length of the data points for math3. 32-bit unsigned integer	
math4_store_len	0x3dc-0x3df	Wave length of the data points for math4. 32-bit unsigned integer	
math1_f_time	0x3e0-0x3e7	Sample interval between two points of math1. 64-bit float point	
math2_f_time	0x3e8-0x3ef	Sample interval between two points of math2. 64-bit float point	
math3_f_time	0x3f0-0x3f7	Sample interval between two points of math3. 64-bit float point	
math4_f_time	0x3f8-0x3ff	Sample interval between two points of math4. 64-bit float point	
math_vert_code_per_div	0x400-0x403	Vertical code number per div of math,32-bit integer	
ch_insert	0x584-0x5a3	Insert ceof of analog channels when current storage length is less than screen width. Array of 8 32-bit integer	
math_insert	0x5a4-0x5b3	Insert ceof of math when current storage length is less than screen width. Array of 4 32-bit integer	
digital_insert	0x5b4-0x5f3	Insert ceof of digital channel when current sigital storage length is less than screen width. Array of 16 32-bit integer	
ch_move	0x5f4-0x613	Position of first point of analog channels in the screen. Array of 8 32-bit integer	

math_move	0x614-0x623	Position of first point of math in the screen. Array of 4 32-bit integer	
digital_move	0x624-0x663	Position of first point of digital channels in the screen. Array of 16 32-bit integer	
memory_switch	0x664-0x673	On/off status of memory, 1 - ON, 0 - OFF Array of 4 32-bit signed integer.	
memory_wave_format	0x674-0x67b	Wave format of memory wave. 0- analog 1- digital 2- frequency domain 3- XY Array of 4 16-bit unsigned integer.	
memory_vdiv_val	0x684-0x723	Vdiv value of memory, such as 2.5V/div. Array of 4 Data With Unit, refer to Table2 for the details.	
memory_vpos_val	0x724-0x7c3	Offset value of memory, such as 2.5V. Array of 4 Data With Unit, refer to Table2 for the details.	
memory_hdiv_val	0x904-0x9a3	Time div value of memory, such as 2.5s/div. Array of 4 Data With Unit, refer to Table2 for the details.	
memory_hpos_val	0x9a4-0xa63	Time delay (Trigger delay) value, Such as 2.48 ms. Array of 4 Data With Unit, refer to Table2 for the details.	
memory_store_len	0xa64-0xa73	Wave length of the data points for memory. Array of 4 32-bit unsigned integer.	
memory_f_time	0xa74-0xa93	Sample interval between two points of memory. Array of 4 64-bit float point.	
memory_vert_code_per_div	0xa94-0xaa3	Vertical code number per div of memory. Array of 4 32-bit integer	
memory_insert	0xaa4-0xab3	Insert ceof of memory when current storage length is less than screen width. Array of 4 32-bit integer	

momory movo	0xab4-0xac3	Docition of first point of momony in the	
memory_move	UXab4-UXac3	Position of first point of memory in the	
		screen.	
manage fiel	0	Array of 4 32-bit integer	
memory_probe_fval	0xac4-0xaf3	Probe value of memory.	
		Array of 4 64-bit float point	
zoom_switch	0xaf4-0xaf7	On/off status of zoom. If zoom_switch is	
		on, use zoom_td_val and	
		zoom_trig_delay_val to calculate time	
		stamp.	
		1 – ON	
		0 - OFF	
		32-bit signed integer.	
zoom_td_val	0xaf8-0xb1f	Time div (time base) value of zoom	
		window, Such as 2.48 ms/div.	
		Data With Unit, refer to <u>Table2</u> for the	
		details.	
zoom_trig_delay_val	0xb20-0xb47	Time delay (Trigger delay) value of zoom	
		window, Such as 2.48 ms.	
		Data With Unit, refer to <u>Table2</u> for the	
		details.	
zoom_vdiv_val	0xb48-0xc87	V/div value of zoom window, such as 2.48	
		mV/div.	
		Array of 8 Data With Unit, refer to Table2	
		for the details.	
zoom_vpos_val	0xc88-0xdc7	Offset value of zoom window, such as	
		2.5V.	
		Array of 8 Data With Unit, refer to Table2	
		for the details.	
reserved	0x400~	reserved	
	•••		

reserved	~0x7ff	reserved	
Wave_data	0x1000-end	Data from CH1 to D15. Only data of the	
		enabled channel(s) are stored to the file.	
		I.E.	
		If there are data of all channels(Ch1 to	
		D15), wave_length from 0x1e8-0x1eb is	
		700(0x2bc).,and data width from 0x260 is	
		0(8-bit).	
		Data of CH1 is from 0x800 to 0xabb.	
		Data of CH2 is from 0xabc to 0xd77.	
		CH3 and CH4 are the same.	
		Next block is the data of	
		math1,wave_length from 0x3cc-0x3cf is	
		700(0x2bc).,and data width from 0x260 is	
		0(8-bit).	
		Data of math1 is from 0x12f0 to 0x15ab.	
		Data of math 2 is from 0x15ac to 0x1867.	
		math 3 and math 4 are the same.	
		Next block is the data of D0. The data	
		length (digital_wave_length) from	
		0x214-0x217 is 1400.	
		Data of D0 is from 0x1de0 to 0x1e8e.	
		D1~D15 are the same.	

Table 2 Data With Unit Description

The state of the s			
Parameter	Address	Description	
value	0x00-0x07	64-bit float point	
value's magnitude	0x08-0x0b	Units of value's magnitude, refer to <u>Table3</u> for the details.	
Unit of value	0x0c-0x27	Unit of value, refer to <u>Table4</u> for the details.	

Table 3 Magnitude Table

Index	Magnitude	Index	Magnitude
0	УОСТО	9	KILO
1	ZEPTO	10	MEGA
2	ATTO	11	GIGA
3	FEMTO	12	TERA
4	PICO	13	PETA
5	NANO	14	EXA
6	MICRO	15	ZETTA

Index	Magnitude	Index	Magnitude
7	MILLI	16	YOTTA
8	IU		

Table 4 Units Table

First 32-bit is basic unit type:

Index	Unit	Index	Unit
0	Is composed of V,A and S.	8	DT_DIV
1	DBV	9	PTS
2	DBA	10	NULL_SENSE
3	DB	11	DEGREE
4	VPP	12	PERCENT
5	VDC		
6	DBM		
7	SA		

The next 64-bit describes the power of V, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of A, in which the first half represents the numerator and the next half represents the denominator.

The next 64-bit describes the power of S, in which the first half represents the numerator and the next half represents the denominator.

For example, {0,1,1,0,1,0,1} represents the unit V. The first number 0 means the unit is composed of V,A and S. The second number 1 and the third number 1 mean the power of V is 1/1. The fourth number 0 and the fifth number 1 mean the power of A is 0/1. The sixth number 0 and the seventh number 1 mean the power of S is 0/1. So the unit is V.

Convert the Data to Voltage

```
So:
voltage = (194-128) * 5000/1000/25+(-7.7) = 5.5 V
```

Calculate the Time Value of the Data

```
time value(S) = -( time_div *grid /2)-time_delay+index*(1/ Sample_rate)
```

```
[example]
grid = 10  # The grid numbers in horizontal direction
time_div = 2 us  # s/div, in units of us
time_delay = 1 us  # s/div, in units of us
Sample rate = 1 GSa/s  # Sa/s, in units of GSa/s
```

So:

The time value of the first point: -(2e-6*10/2)-1e-6+0*(1/1e9) = -11e-6 s. The time value of the second point: $-(2e-6*10/2) \cdot 1e-6+1*(1/1e9) = -11.001e-6$ s.

Binary V6.0 (New bin file structure)

SSL(0.4.9.0&later) Update date: 2024-6-3

Table 1 File header

Parameter	Address	Description
version	0x00-0x03	Version number of the file.
		4,use this block.
header_bytes	0x04-0x05	The number of bytes in the header of this
		file
endian	0x06-0x07	Used to identify the size of files
module	0x08-0x39	Product model
serial	0x40-0x55	product serial number
software_version	0x56-0x87	Product software version number
wave_number	0x88-0x91	The number of waveforms stored in the
		file

Table 2 Waveform data header

Parameter	Address	Description
base_header_type	0x00-0x03	Basic head type

base_header_bytes	0x04-0x07	The length information of the shared basic header, excluding additional information	
wave_type	0x07-0x11	Waveform type, Normal/Digital/FFT	
channel_type	0x12-0x13	Channel type	
channel_index	0x14-0x15	Channel index	
label	0x16-0x31	Channel labels	
date	0x32-0x63	Sampling date YYYY mm dd	
time	0x64-0x95	Sampling date HH-MM-SS SSSSSSSS	
hori_scale	0x96-0xa3	Horizontal gear parameters with order of magnitude units of 1	
hori_pos	0xa4-0xb1	Horizontal position parameter with order of magnitude units of 1	
hori_origin_pos	0xb2-0xb9	Used to mark the position of the horizontal origin (time=0) in the data	
hori_interval	0хс0-0хс7	Horizontal sampling interval for labeling	
hori_unit	0xc8-0xf9	Horizontal unit, used for parameter recovery, reserved externally	
hori_unit_str	0xfa-0x109	Horizontal unit string	
vert_scale	0x110-0x107	Vertical gear parameters with order of magnitude units of 1	
vert_pos	0x108-0x115	Vertical position parameter with order of magnitude units of 1	
vert_origin_pos	0x116-0x131	Used to mark the code value corresponding to the vertical origin (voltage=0)	
vert_interval	0x132-0x139	Used to mark the voltage corresponding to each code word value in the data	
vert_unit	0x140-0x171	Vertical unit, used for parameter recovery, reserved externally	
vert_unit_str	0x172-0x187	Vertical unit string	
add_info_bytes	0x188-0x191	The length of additional information	
data_number	0x192-0x195	Number of data points	
data_type	0x196-0x199	data type	
data_bytes	0x1a0-0x1a3	The total number of bytes in the data area	

Immediately after the file header, the waveform data header is stored, which includes the basic information header and the additional information header. The basic information header is a common part of information for different types of waveforms, while the additional information header is a unique part of information for each waveform.

Convert the Data to Voltage

```
voltage = (code -vert_origin_pos)* vert_interval

[example]
vert_origin_pos = 25  # The code value corresponding to the vertical origin (voltage=0)
code = 27  # got from the binary file
vert_interval = 2  # The voltage corresponding to each code word value in the data
vert_unit_str = "V"  # vertical unit string

So:
voltage = (27-25) *2 = 4 V
```

Calculate the Time Value of the Data

```
time value(S) = (index - hori_origin_pos)* hori_interval

[example]
index = 1  # The grid numbers in horizontal direction
hori_origin_pos = 0  # The position of the horizontal origin (time=0) in the data
hori_interval =1e9  # Horizontal sampling interval of data
hori_unit_str = "s"  # Horizontal unit string

So:
The time value of the second point: (2 - 1)*(1e9) = 1e9s.
```

.mlg File of Measure Logger

Table 6 Format of the Measure Logger File

Parameter	Address	Description
file_type	0x00-0x07	Type of the file, the value is always "MSLG". Array of 8 char.
file_version	0x08-0x0b	Version number of the file. 32-bit unsigned integer. 0: V1.0
model_number	0x0c-0x2b	Model number of the product.

		Array of 32 char.		
serial_number	0x2c-0x4b	Social number of	the product	
Serial_Humber	0X2C-0X4D	Array of 32 char.	Serial number of the product.	
software version	0x4c-0x6b	Version of the so	ftwara	
software_version	0x4c-0x6b	Array of 32 char.	itware.	
start_time	0x6c-0x87	Start time of logg		
		Array of 7 32-bit		
		Index	Element	
		0	Year	
		1	Mouth	
		2	Day	
		3	Hour	
		4	Minute	
		5	Second	
		6	Millisecond	
stop_time	0x88-0xa3	Stop time of logg		
		Array of 7 32-bit		
		Index	Element	
		0	Year	
		1	Mouth	
		2	Day	
		3	Hour	
		4	Minute	
		5	Second	
		6	Millisecond	
log_interval_ms	0xa4-0xa7	Logging interval i	n milliseconds.	
		32-bit unsigned in	nteger.	
points_number	0xa8-0xab	Points per trace.		
		32-bit unsigned in	nteger.	
traces_number	0xac-0xaf	Number of enable	ed traces.	
		32-bit unsigned in	nteger.	
traces_switch	0xb0-0xcf	Trace switch status.		
		Array of 8 32-bit	unsigned integer.	
		0: OFF		
		1: ON		
source	0xd0-0xef	Source of log.		
		Array of 8 32-bit unsigned integer.		
		0: Measure	0: Measure	
		1: Meter		
measure_source_A	0xf0-0x10f	The first source o	f measurement.	

						1
		Array of 8 3	_	_		
		Only for the	e measure l		ope to reca	all,
		refer	to	the	paramet	ter
		_	source_A_s			
measure_source_B	0x110-0x12f	The second	I source of r	neasureme	nt.	
		Array of 8 3	32-bit unsigi	ned integer		
		Only for the	e measure l	ogger on so	cope to reca	all,
		refer	to	the	paramet	ter
		"measure_	source_B_s	tring" for d	etails.	
measure_type	0x130-0x14f	Type of me	asurement.			
		Array of 8 3	32-bit unsigi	ned integer	•	
		Only for the	e measure l	ogger on so	ope to reca	all,
		refer to the	e parameter	"measure	_type_strin	g"
		for details.				
unit_type	0x150-0x16f	Unit.				
		Array of 8 3	32-bit unsigi	ned integer	•	
		Only for the	e measure l	ogger on so	cope to reca	all,
		refer to	the param	neter "unit	t string" f	for
		details.	·		_	
precision	0x170-0x18f	Precision of data.				
•		Array of 8 32-bit signed integer.				
		_	e measure l	-	ope to reca	all.
precision_type	0x190-0x1af	Type of pre	cision.			
		Array of 8 32-bit unsigned integer.				
		Only for the	e measure l	ogger on sc	ope to reca	all.
source_string	0x1b0-0x1ef	Source of lo				
_		Array of 8 arrays of 8 char.				
measure_source_A_string	0x1f0-0x22f	The first source of measurement.				
0		Array of 8 a	rravs of 8 c	har.		
measure_source_B_string	0x230-0x26f	The second			nt.	
		Array of 8 a			-	
measure_type_string	0x270-0x2ef	Type of me				
casare_type_string	3,2,0 0,201	1.				
unit_string	0x2f0-0x32f	Array of 8 arrays of 16 char. Unit.				
wint_3ti 1118	37210 UNJZI	Array of 8 arrays of 8 char.				
Reserved.	0x330-0x7cf	Reserved.				
Data	0x330-0x7ci					
Data	OX/UU-LIIU	Log data. Array of 32-bit float. Example:				
		Status of traces:				
					7	
					∮ 	
		OFF	ON	OFF	ON	

Data:	
Index	Data
0 (Offset = 0x7d0)	Trace2_data[0]
1	Trace4_data[0]
2	Trace2_data[1]
3	Trace4_data[1]
4	Trace2_data[2]
5	Trace4_data[2]
	•••••

*.slg File of Sample logger

Table 7 Format of the Sample Logger File.

Parameter	Address	Description
product_info	0x00-0x7f	Product information. See the Table 8 Format
		of Product Information. (Base offset = 0x00)
		for details.
record_info	0x80-0x17f	Record information. See the Table 9 Format of
		Record Information. (Base offset = 0x80)
Reserved	0x180-0x27f	Reserved.
ch_1_info	0x280-0x37f	Channel 1 information. See the Table 10
		Format of Channel Information
ch_2_info	0x380-0x47f	Channel 2 information.
ch_3_info	0x480-0x57f	Channel 3 information.
ch_4_info	0x580-0x67f	Channel 4 information.
Reserved	0x680-0x1000fff	Reserved.
Data	0x1001000-End	Due to memory limitation, data is written by
		sector, see the Table 11 Format of Sector
		Information.

Table 8 Format of Product Information. (Base offset = 0x00)

Parameter	Offset	Description
file_type	0x00-0x07	Type of file.
		Array of 8 char.
		The value is always "SPLG".
file_version	0x08-0x0b	Version number of the file.
		0: V1.0
model_number	0x0c-0x2b	Model number of the product.

		Array of 32 char.
serial_number	0x2c-0x4b	Serial number of the product.
		Array of 32 char.
software_version	0x4c-0x6b	Version of the software.
		Array of 32 char.
Reserved	0x6c-0x7f	Reserved.

Table 9 Format of Record Information. (Base offset = 0x80)

Parameter	Offset	Description		
enable_ch_num	0x00-0x03	Number of enabled channels.		
		32-bit unsigned integer.		
sector_num	0x04-0x07	Number of sectors per channel.		
		32-bit unsigned integer.		
tdiv_value	0x08-0x0f	Timebase when log start. (s/div)		
		64-bit double precision floating point.		
sample_rate	0x10-0x17	Sample rate. (Sa/s)		
		64-bit double precision floating point.		
record_time	0x18-0x1f	Recorded time in second.		
		64-bit double precision floating point.		
points_number	0x20-0x27	Number of data points per channel.		
		64-bit unsigned integer.		
start_sector_offset	0x28-0x2f	File offset of the first sector.		
		64-bit unsigned integer.		
end_sector_offset	0x30-0x37	File offset of the last sector.		
		64-bit unsigned integer.		
start_data_offset	0x38-0x3f	The start offset of the data area.		
		64-bit unsigned integer.		
end_data_offset	0x40-0x47	The end offset of the data area.		
		64-bit unsigned integer.		
data_bit_index	0x48-0x4b	Bits number of data.		
		32-bit unsigned integer.		
		8: 8-bit 11: 11-bit 14: 14-bit		
		9: 9-bit 12: 12-bit 15: 15-bit		
		10: 10-bit 13: 13-bit 16: 16-bit		
start_time	0x4c-0x67	Start time of logging.		
		Array of 7 32-bit unsigned integer.		
		Index Element		
		0 Year		
		1 Mouth		
		2 Day		

Reserved	0x68-0xff	Reserved.	1
		6	Millisecond
		5	Second
		4	Minute
		3	Hour

Table 10 Format of Channel Information

(Base offset: CH1 = 0x280, CH2 = 0x380, CH3 = 0x480, CH4 = 0x580)

Parameter	Offset	Description	
ch_act	0x00-0x03	Switch status of channel.	
		32-bit unsigned integer.	
		0: OFF	
		1: ON	
probe_index	0x04-0x07	Probe value index of channel.	
		32-bit unsigned integer.	
probe_custom_val	0x08-0x0f	Custom configured probe of channel.	
		64-bit double precision floating point	
vdiv_val	0x10-0x17	V/div value of channel.	
		64-bit double precision floating point.	
vpos_val	0x18-0x1f	Offset value of channel.	
		64-bit double precision floating point.	
value_per_adc_code	0x20-0x27	Vertical value per ADC code.	
		64-bit double precision floating point.	
zero_adc_code	0x28-0x2b	Reference code of value zero.	
		32-bit unsigned integer.	
unit_index	0x2c-0x2f	Type of channel unit.	
		32-bit unsigned integer.	
		0: V	
		1: A	
unit_string	0x30-0x37	Unit of channel.	
		Array of 8 char.	
Reserved	0x38-0xff	Reserved.	

Table 11 Format of Sector Information

Parameter	Offset	Description	
sector_index	0x00-0x07	Sector index.	
		64-bit unsigned integer.	
data_index_start	0x08-0x0f	Data index of the first data in current sector.	
		64-bit unsigned integer.	
data_index_end	0x10-0x17	Data index of the last data in current sector.	

		64-bit unsigned integer.	
data_num	0x18-0x1f	Number of data in current sector.	
		64-bit unsigned integer.	
ch	0x20-0x23	Channel.	
		32-bit unsigned integer.	
Reserved	0x24-0x3b	Reserved.	
Data	0x3c-0x9ff	Waveform data.	
		8-bit or 16-bit unsinged integer.	
		2500 points per sector.	

Example:

data_bit_index = 8 #8bit per point. So the size of sector is 2560 bytes.

start_sector_offset = 0x1001000

points_number = 3000 #2500 points are in the first sector, and the other 500 points are in the second sector. The left space in the second sector will be filled with zero.

So the file structure is shown in Figure 1.

	0x0000
Product information	0,,00,90
Record information	0x0080
Reserved	0x0180
Channel 1 information	0x0280
Channel 2 information	0x0380
Channel 3 information	0x0480
Channel 4 information	0x0580
Reserved	0x0680
Channel 2 Sector #1	0x1001000
Channel 4 Sector #1	0x1001A00
Channel 2 Sector #2	0x1002400
Channel 4 Sector #2	0x1002E00
	0x1003800
	J

Channel 2 Sector #1	0x1001000 + 0x0000
Sector information	0.4004000 + 0.0000
Channel 2 Wave data #1	0x1001000 + 0x003C
	0x1001000 + 0x003D
Channel 2 Wave data #2	0x1001000 + 0x003E
Channel 2 Wave data #3	
	0x1001000 + 0x003F
	0x1001000 + 0x09FF
Channel 2 Wave data #2500	0x1001000 + 0x0A00
Channel 2 Sector #2	0x1002400 + 0x0000
Sector information	0x1002400 + 0x003C
Channel 2 Wave data #2501	0x1002400 + 0x003D
	0x1002400 + 0x003D
Channel 2 Wave data #3000	0x1002400 + 0x0230
Chaimei z wave data #3000	0x1002400 + 0x0231
Zero	0.4003400 + 0.0333
	0x1002400 + 0x0232
	0x1002400 + 0x0A00

Figure 1 Example for Sample Logger File Structure

Convert the Data to Voltage

```
voltage = (data-zero\_adc\_code) \cdot value\_per\_adc\_code - vpos\_val Example: unit\_string = \text{``V''} data = 145 zero\_adc\_code = 128 value\_per\_adc\_code = 0.04 \text{ V} vpos\_val = -1.0 \text{ V} So: voltage = (145-128) \times 0.04 - (-1.0) = 1.68 \text{ V}
```

Calculate the Time Value of Data

time_value = data_index/sample_rate

Where:

 $data_index = sector_index \cdot 2500 + data_index_in_sector$

Example:

sector_index = 10
data_index_in_sector = 8
sample_rate = 25000 Sa/s
So:

data_index = $10 \times 2500 + 8 = 25008$ time_value = $25008 \div 25000 = 1.00032$ s