
The basic output waveform and related parameters of the arbitrary 

waveform generator 

 

Traditional function generators can output standard waveforms such as sine waves, square waves, 

and triangle waves. However, in actual test scenarios, in order to simulate the complex conditions 

of the product in actual use, it is often necessary to artificially create some "irregular" waveforms 

or add some specific distortion to a waveform. Traditional function generators can no longer meet 

the requirements and an arbitrary waveform generator may be a good option. 

 

Arbitrary waveform generators can easily replace the function generators. They can source sine 

waves, square waves, and triangle waves like a standard function generator. In addition, they can 

also output pulse, noise, DC signal types, modulated signals, sweeps and bursts. Many arbitrary 

waveform generators currently on the market are equipped with arbitrary waveform drawing 

software. Through this software, theoretically, the arbitrary waveform generator can be remotely 

controlled to output all the signals required in the test process. 

 

So, what types of waveforms can an arbitrary waveform generator output?  

What parameters are available for an arbitrary waveform?  

How to measure the quality of the output waveform?  

 

1. Sine Wave / Cosine Wave 

 

 
Figure 1 Sine wave / Cosine wave 

 

Sinusoidal (sine) and cosine waves are the two most familiar waveforms in electronics.  

Sine/cosine waves are defined as follows. 

 

  (Formula 1) 

OR 

  (Formula 2) 

( ) ( )c 0f t Acos t=  +

( ) ( )c 0f t Asin t=  +



Where A represents the amplitude of the sine wave,
  

represents the angular frequency, and 

 
represents the initial phase, which can be omitted in the general calculation. The sine and the 

cosine waves are essentially the same, but the initial phase differs by 90 °. 

 

 

Figure 2 Sine wave setting interface in SDG1000X 

 

These three parameters are as shown in Figure 2. The frequency and period related to the angular 

frequency can be set in the arbitrary waveform generator, and the conversion relationship between 

them is: 

(Formula 3) 

The frequency of a generator, like the SIGLENT SDG2122X function / arbitrary waveform generator 

sine wave can be set up to 120 MHz. Usually, the nominal maximum output frequency of the 

arbitrary waveform generator often refers to the maximum frequency of its sine wave output. 

You can also set the amplitude, A. When the output impedance is set to the "high impedance" 

state, the maximum output amplitude of the SDG2122X can reach 20 Vpp.  

 

The initial phase can be set by clicking the corresponding button in the [Phase] menu. The range 

of the initial phase can be set between -360 ° and + 360 °. 

 

From the time domain perspective, the parameters and waveforms of the sine and cosine waves 

are relatively simple. However, all electronic devices have more or less distortion, and arbitrary 

waveform generators are no exception. Let’s observe sine and cosine waves in the frequency 

domain. 

The Fourier transform corresponding to the time domain function represented by Formula 1 is: 

 

c
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   (Formula 4) 

 

The spectrum diagram represented by Formula 4 is shown in the figure below: 

 
 

Figure 3: Cosine spectrum/frequency domain 

 

Looking at the cosine spectrogram (showing amplitude vs. frequency) in Figure 3, we can find that 

the frequency of a sine/cosine wave can be represented by a single line on the spectrum. Signals 

that occupy only one frequency are called "monotone” because they only have one frequency 

component. 

 

In engineering, due to the non-ideal characteristics such as the non-linearity of the circuit, the 

generated sine wave is often not an ideal monotone signal, but may contain other frequencies. 

Collective “unwanted” frequencies are often lumped together under the term distortion. Some 

common contributors to distortion are harmonics and spurs.  

 

1.1 Harmonic distortion 

 

The fundamental frequency of a signal is the lowest frequency component of a periodic signal. 

Harmonics are the frequency components of the signal that are integer multiples of the 

fundamental. Distortion is the ratio of signal power to maximum harmonic power, usually in dB, as 

shown in the following figure: 

 

 

Figure 4: Harmonic distortion 

 

Another index to measure the performance of harmonic distortion is total harmonic distortion 

(THD), which refers to the ratio of the root mean square of the amplitude of each harmonic (usually 
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taken to the 6th harmonic in engineering) to the signal amplitude, as shown in Formula 5, usually 

expressed in %. When an SDG2000X outputs 0 dBm, 10 Hz ~ 20 kHz sine wave, the total harmonic 

distortion is 0.075% at most. 

 

(Formula 5) 

 

1.2 Non-harmonic spurs 

 

In addition to harmonics, the distortion caused by nonlinearity may also be some other spectral 

components, such as the intermodulation products of the signal (or its harmonics) and the clock 

signal. It is necessary to define other index-non-harmonic spurs to measure. 

 

The size of the spur is usually expressed by the spurious-free dynamic range (SFDR) (see Figure 5), 

which refers to the ratio of the signal power to the maximum spurious power. The unit is usually 

dB. Please note that the definition of spurs in some places includes harmonic and non-harmonic 

spurs, but in arbitrary waveform generators, spurs only refer to distortions other than harmonics. 

 

 
 

Figure 5: SFDR 

 

2. Square Wave / Pulse 

 

 



Square wave / pulse 

The time-domain waveform of the square wave can be represented by the following diagram: 

 

 

Figure 7 Square wave time domain diagram 

 

The expression of the square wave in a period is: 

 

    (Formula 6) 

 

T is the period of the square wave and the length of time occupied by the high level in a period. It 

is the duty cycle of the square wave. 

 

 

Figure 8 SDG2000X square wave setting interface 

 

In the square wave setting interface, in addition to setting all the parameters that can be set by the 

sine wave / cosine wave, the option of setting the duty cycle is added, but in the arbitrary waveform 
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generator, the setting range of the duty cycle is generally affected by the frequency Set limits. 

Formula 6 is actually a rectangular function, and its frequency spectrum can be expressed as: 

 

(Formula 7) 

This is a sinc function with amplitude . 

 

Since the square wave is an extension of the rectangular function taking T as the period, we can 

use some digital signal processing theories to further our point. 

 

A function is periodic in the time domain, corresponding to the discretization in the frequency 

domain, therefore, the spectrum of the square wave is actually the spectrum is  sampled 

with  as the sampling point. Intuitively, it is the angular frequency  of the 

square wave and its harmonic components under the envelope of the sinc function. 

 

The following figure is the spectrum corresponding to the square wave of amplitude A, , 

where  is the fundamental frequency of the square wave: 

 

 

Figure 9 Square wave spectrum 

 

It can be seen that the spectrum of the square wave is infinitely wide. If you let the square wave 

pass through a low-pass filter and only retain some of its harmonic components, the waveform in 

the corresponding time domain will be distorted. As can be seen from the figure below, the square 

wave after low-pass filtering not only slows down the signal edge, but also produces an overshoot 

up and down. This overshoot phenomenon is the "Gibbs effect". 
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Figure 10    5 MHz square wave, 50% duty cycle, 3rd harmonic reserved 

 

Figure 11    5 MHz square wave, 50% duty cycle, 5th harmonics reserved 

 

More harmonics can mean less distortion for square waves. For narrow pulses, due to the wide 

spread of the Sinc function envelope and the spread of spectrum energy, it is often necessary to 

retain many orders of higher harmonics to avoid large distortions. As shown in the figure below, it 

is also the 5 MHz frequency, which retains the 5th harmonic, but the narrow pulse of 20 ns has 
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already distorted in amplitude. 

 

Figure 12     5 MHz pulse, 20 ns, 5th harmonic reserved 

 

For a square wave with a 50% duty cycle, at least the 3rd to 5th harmonics must be retained for 

decent reproduction. Therefore, the square wave frequency of the arbitrary waveform generator 

generally cannot reach its maximum output frequency index. This can be verified on the generator 

datasheet.. such as SDG5000 function / arbitrary waveform generator series, were the maximum 

output sine frequency is 160 MHz, but the maximum frequency of a square wave is 50 MHz. 

 

2.1 Jitter 

 

Square wave / pulse is often used as a clock signal, so we must pay attention to the clock signal – 

jitter specification. Jitter can be defined as the deviation of a signal from its ideal time position 

when it transitions. 

 

 

Figure 13   period jitter 

The components of a signal jitter are complicated, mainly divided into deterministic jitter and 

random jitter. Random jitter displays a Gaussian distribution while deterministic jitter is composed 
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of multiple components. For example, in an arbitrary waveform generator, the square wave / pulse 

generated by the DDS method may produce deterministic jitter of 1 sampling period. Many 

generators use a unique design known as EasyPulse technology to eliminate this jitter. We will 

expand on EasyPulse technology in the following chapters. 

 

There are usually three ways to measure jitter in the time domain: Period, cycle-cycle and TIE. The 

method we use when measuring jitter is cycle-cycle. Since the components of jitter contain random 

components that have a Gaussian distribution, the root mean square value (rms) is generally used 

to measure the jitter according to statistical methods.  

The SDG2000X series function / arbitrary waveform generator using EasyPulse technology has a 

jitter specification of < 150 ps, which effectively overcomes the larger jitter seen with other designs 

that use only Direct Digital Synthesis (DDS) technology. 

 

3. Triangle Wave 

 
Figure 14   Triangle wave 

 

The time-domain waveform of a triangular wave with 50% symmetry is shown in the figure below: 

 

 

Figure 15: Triangular wave time domain waveform  

 

The mathematical expression of a triangular wave with a period  in a period is as follows, we 

call it a triangular pulse: 

 

   Formula 8 

 

The corresponding spectrum expression is: 
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  (Formula 9) 

 

Similar to the square wave, the triangle wave is an extension of the triangle pulse with T=  as the 

period, so the spectrum of the triangle wave is actually the spectrum is  sampled with 

 as the sampling point. Intuitively, it is the angular frequency  of 

the square wave and its harmonic components under the envelope of the sinc function. The 

corresponding spectrogram is as follows. It can be seen that since the square envelope of the Sinc 

function is equal to 0 when n is even, the triangle wave spectrum actually contains only odd 

harmonics. 

 

 

Figure 16  Triangle wave spectrum 

 

 

Figure 17   5 MHz triangle wave, after 20 MHz low-pass filtering 

In the triangle wave setting interface, you can set the symmetry of the triangle wave. The setting 

range is from 0% to 100%. When the value of the symmetry is not 50%, the arbitrary waveform 
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generator will output a sawtooth wave. 

 

 

Figure 18   Triangle wave parameter setting interface 

 

4. Sawtooth Wave 

 

The sawtooth wave is an "asymmetric triangular wave". In the most extreme case, the symmetry 

is even 0% or 100%. At this time, the sawtooth wave has a jump in the time domain, and the 

spectrum on the corresponding spectrum will be wide. Similar to narrow pulses, many higher order 

harmonics must be retained to insure less distortion. 
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Figure 19   150 kHz sawtooth wave, after 20 MHz low-pass filtering 

 

 

Figure 20   1 MHz sawtooth wave, after 20 MHz low-pass filtering 

 

 

Figure 21   5 MHz sawtooth wave, after 20 MHz low-pass filtering 

 

5. White Gaussian Noise 
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Figure 22   Noise 

 

If the amplitude distribution of noise obeys a Gaussian distribution and its power spectral density 

is uniformly distributed, it is called white Gaussian noise. Natural thermal noise, quite commonly 

the largest noise source in electronics, is white Gaussian noise. 

 

The amplitude of Gaussian noise is a random number, not a certain value. So we use two statistical 

parameters of the Gaussian distribution: mean (μ) and standard deviation (σ) to measure the 

magnitude of Gaussian noise. 

 

 

 

 

Figure 23: The mean and standard deviation of Gaussian noise 

 

 



Figure 24: White noise power spectrum 

 

In many SIGLENT arbitrary waveform generators, you can set the two parameters of the average 

and standard deviation of the output noise. 

 

 

 

Figure 25   SDG2000X noise setting interface 

The analog channel of the arbitrary waveform generator is a low-pass channel. Therefore, after the 

white Gaussian noise passes through the analog channel, it becomes band-limited white Gaussian 

noise, and its bandwidth is generally measured by the -3dB cut-off point. 

 

 

Figure 26: Using White Gaussian noise to test the frequency response of the analog channel of an 

SDG2000X 

 

Since the spectrum of the White Gaussian noise itself is uniform, the frequency response of the 

band-limited White Gaussian noise generated by the low pass channel is actually the frequency 

response of the low pass channel. Using this feature, white Gaussian noise can be used to test the 



frequency response of the analog channel of the arbitrary waveform generator. 

The noise of SDGs series is generated by a special White Gaussian noise generator, and its 

repetition period is more than 100 years. It can be regarded as a random noise in most engineering 

applications. 

 

6. Arbitrary waveform output 

 
Figure 27 SDG2000X arbitrary waveform setting interface 

In addition to the basic waveforms described above, the arbitrary waveform generator can also 

build many special waveforms in the "arbitrary waveform" mode. There are three ways to set it. 

We can load a waveform from the built-in functions included in the generator.  

We can also programmatically generate waveform files through tools such as Matlab and import 

them into the generator. In addition, we can also draw waveforms not included in the built-in 

waveforms through arbitrary waveform drawing software. In the SDG2000X series function / 

arbitrary waveform generator, the maximum length of the arbitrary waveform can reach 8 Mpts, 

and the output frequency range is between 1 μHz and 20 MHz. 

 

 



 

Figure 28   SDG2000X built-in waveforms 

 

The selection interface of the built-in waveform is shown in Figure 28. The system classifies the 

built-in waveform according to 10 categories: Common, math, engine, window, trigonometry, 

square, medical, modulation, filter and demo. After loading the built-in waveform, the frequency, 

amplitude and offset can also be adjusted.  

 

 

Figure 29: EasyWave arbitrary waveform drawing software 

 

The entire series of arbitrary waveform generators produced by Siglent Technologies can use 

EasyWave arbitrary waveform drawing software. You can draw arbitrary waveforms by manual 

drawing, equation drawing, coordinate drawing, and more.  

 

So far, we have introduced basic waveform output by the arbitrary waveform generator and its 

related parameters. Next, we will introduce analog modulation, sweep, burst and other waveform 

output. 

 


