
SDS2000X Series Super Phosphor Oscilloscope

SDS2304X / SDS2302X SDS2204X / SDS2202X SDS2104X / SDS2102X SDS2074X / SDS2072X

Product Overview

SIGLENT's SDS2000X series Super Phosphor Oscilloscopes are available in bandwidths of 70MHz, 100MHz, 200MHz and 300MHz, maximum sample rate of 2GSa/s, and maximum record length of 140Mpts. The most commonly used functions can be accessed with its user-friendly one-button design.

The SDS2000X series employs a new generation of SPO technology. It has an innovative digital trigger system with high sensitivity and low jitter, and a maximum waveform capture rate of 140,000 wfm/s (normal mode), up to 500,000 wfm/s (sequence mode). It also employs not only the common 256-level intensity grading display function but also a color temperature display mode. The trigger system supports multiple powerful triggering modes including serial bus triggering. History waveform recording and sequence acquisition allow for extended waveform records to be captured, stored, and analyzed. An impressive array of measurement and math capabilities, options for a built-in 25 MHz arbitrary waveform generator, 16 digital channels (MSO), as well as serial decoding are also features of the SDS2000X.

Key Features

- № 70MHz, 100MHz, 200MHz, 300MHz models
- Real-time sampling rate up to 2GSa/s
- New generation of SPO technology
 - Waveform capture rate up to 140,000 wfm/s (normal mode), and 500,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color temperature display
 - Record length up to 140Mpts
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern and Video (HDTV supported)
- Serial bus triggering and decoder, supports protocols IIC, SPI, UART, RS232, CAN and LIN
- Low background noise, supports 1mV/div to 10V/div voltage scales
- № 10 types of one-button shortcuts, including Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweeps, Zoom and Print
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event
- History waveform record (History) function, the maximum recorded waveform length is 80,000 frames
- Automatic measurement function on 37 parameters, supports statistics, Gating measurement, Math measurement, History measurement and Ref measurement
- Math function (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- ☐ High Speed hardware based Pass/ Fail function
- 16 Digital channels (MSO), Maximum waveform capture rate up to 500 MSa/s, Record length up to 14 Mpts/CH
- 25MHz function/arbitrary waveform generator, built-in 10 types of waveforms
- Large 8 inch TFT-LCD display with 800 * 480 resolution
- Abundant interfaces: USB Host, USB Device (USBTMC), LAN (VXI-11), Pass/Fail, Trigger Out
- Supports SCPI remote control commands
- Supports Multi-language display and embedded online help

Models and Key Specifications

Model	SDS2072X SDS2074X	SDS2102X SDS2104X	SDS2202X SDS2204X	SDS2302X SDS2304X
Bandwidth	70 MHz	100 MHz	200 MHz	300 MHz
Sampling Rate (Max.)	2 GSa/s			
Channels	2 + EXT 4 + EXT			
Memory Depth (Max.)	140 Mpts (Single-Channel), 70 Mp	ots (Dual-Channel)		
Waveform Capture Rate (Max.)	140,000 wfm/s (normal mode), 500,000 wfm/s (sequence mode)			
Trigger Type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern, Video			
Serial Trigger	IIC, SPI, UART/RS232, CAN, LIN			
Decoder Type (Optional)	IIC, SPI, UART/RS232, CAN, LIN			
16 Digital Channels (MSO Option)	Maximum waveform capture rate up to 500 MSa/s, Record length up to 14 Mpts/CH			
Waveform Generator (Optional)	Single channel, Max. frequency up to 25MHz, 125MSa/s sampling rate, 16Kpts wave length			
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out			
Probe (Std)	PB470 70MHz 1 pcs for each channel	PP510 100MHz 1 pcs for each channel	SP2030A 300MHz 1 pcs for each channel	SP2030A 300MHz 1 pcs for each channel
Display	8 inch TFT LCD (800x480)			

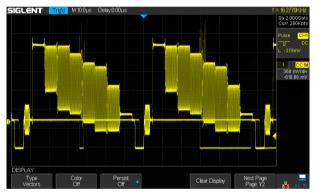
Functions & Characteristics

■ 8 inch TFT-LCD Display and 10 One-button Menus

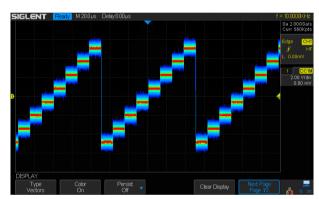
- 8-inch TFT-LCD display with 800 * 480 resolution
- Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweeps, Zoom and Print
- Supports auto detection of 10X probe with read-out port

Functions & Characteristics

№ Waveform Capture Rate up to 500,000wfm/s

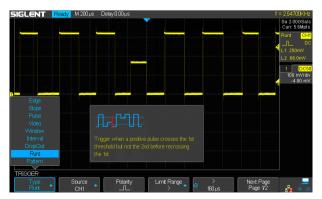

With a waveform capture rate of up to 500,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events

Record Length of up to 140Mpts

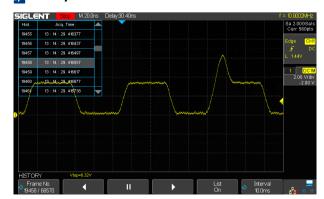


Using hardware-based Zoom technique and record length of up to 140Mpts, users are able to use a higher sampling rate to capture more of the signal, and then quickly zoom in to focus on the area of interest

256-level Intensity Grading and Color Temperature Display



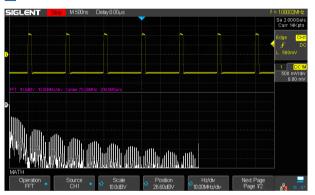
256-level intensity grading display on waveform


Color temperature display

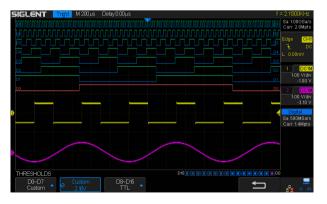
Abundant Trigger Functions

Edge, Slope, Pulse, Video, Windows, Runt, Interval, Dropout, Pattern, IIC, SPI, UART/RS232, LIN and CAN

History Mode


History function can record up to 80,000 frames of waveforms. The recording is executed automatically, so that the customer can play back the history waveforms at any time to observe unusual events, and locate the source quickly through the cursors or measurements. Located on the keyboard Panel, this function is easily accessible

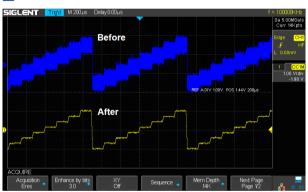
Sequence Mode


Segmented memory collection will store the waveform into multiple (up to 80,000) memory segments and each segment will store a triggered waveform, as well the dead time information. The dead time between segments could be as small as $2\mu s$. All the segments can be play back using History function.

Advanced Math Function

In addition to the traditional (+, -, X, /) operations, FFT, integration, differential, and square root operations are supported. The integration operation supports gating, which uses cursors to define the domain of integration

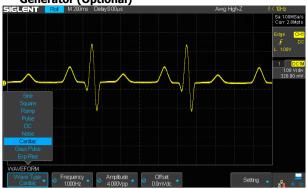
16 Digital Channels / MSO (Optional)


4 analog channels plus 16 digital channels enables users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument.

Comprehensive Statistical Functions

Parametric statistical functions to display 5 parameters of any measurements: current, mean, minimum value, maximum value, and standard deviation. The measurement count is also displayed. The maximum number of measurements that can be run and simultaneously analyzed statistically is five. Supports Gating measurements, Math measurement, History measurement and Ref measurement

Eres Mode


Eres mode can improve the SNR effectively, without the dependence on the periodicity of signal and stable triggering

Serial Bus Decoding Function (Optional)

Displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in table form

Built-in 25MHz Function/Arbitrary Waveform Generator (Optional)

10 built-in waveforms plus 4 ARBs. The arbitrary waveforms can be accessed and edited by the EasyWave PC software

Complete Connectivity

USB Host, USB Device (USBTMC), LAN(VXI-11), Pass/Fail, Trigger Out

Specifications

All specifications are not guaranteed unless the following conditions are met:

- The oscilloscope calibration period is valid
- The oscilloscope has been working continuously for at least 30 minutes at the specified temperature (18°C ~ 28°C)

Acquire System	
Sampling Rate	2GSa/s (single-channel ^[1]), 1GSa/s (dual-channel)
Memory Depth	140Mpts (single-channel), 70Mpts (dual-channel)
Peak Detect	1ns
Average	Averages: 4, 16, 32, 64, 128, 256, 512, 1024
Eres	Enhance bits: 0.5, 1, 1.5, 2., 2.5, 3 selectable
Interpolation	Sinx/x, Linear

Input	
Channel	2/4 + EXT
Coupling	DC, AC, GND
Impedance	DC: $(1M\Omega\pm2\%)$ $(22pF\pm3pF)$ 50Ω : $50\Omega\pm2\%$
Max. Input voltage	1MΩ ≤ 400Vpk (DC + Peak AC <=10kHz) 50Ω ≤ 5Vrms
CH to CH Isolation	DC~Max BW >35dB
Probe Attenuation	0.1X, 0.2X, 0.5X, 1X, 2X, 5X, 10X, 20X, 50X, 100X, 200X, 500X, 1000X, 2000X, 5000X, 10000X

Horizontal System		
Time Scale	1.0ns/div ~ 50s/div	
Channel Skew	<100ps	
Waveform Capture Rate	Up to 140,000 wfm/s (normal mode), 500,000 wfm/s (sequence mode)	
Intensity grading	256-level	
Display Format	Y-T, X-Y, Roll	
Time base Accuracy	±25ppm	
Roll Mode	50ms/div ~ 50s/div (1-2-5 Step)	

Vertical System	
Bandwidth (-3dB)	300MHz (SDS2304X/ SDS2302X) 200MHz (SDS2204X/ SDS2202X) 100MHz (SDS2104X/ SDS2102X) 70 MHz (SDS2074X/ SDS2072X)
Vertical Resolution	8 bit
Vertical Range	8 divisions
Vertical Scale (Probe 1X)	1mV/div - 10V/div (1-2-5 step)
Offset Range (Probe 1X)	1mV/div ~ 100mV/div: ±1V 102mV/div ~ 1V/div: ±10V 1.02V/div ~ 10V/div: ±100V
Bandwidth Limit	20MHz ±40%
Bandwidth Flatness	DC ~ 10%(BW): ±1dB 10% ~ 50%(BW): ±2dB 50% ~ 100%(BW): +2dB/-3dB
Low Frequency Response (AC Coupling -3dB)	≤10Hz (at input BNC)
Noise	$stdev \le 0.2 \text{ div } (< 2mV/\text{div})$ $stdev \le 0.5 \text{ div } (\ge 2mV/\text{div})$
DC Gain Accuracy	5mV/div ~10V/div: ≤3.0% ≤2mV/div: ≤4.0%
Offset Accuracy	≥2mV/div: ±(1%*offset+1.5%*8*div+2mV) <2mV/div: ±(1%* offset +1.5%*8*div+1mV)
Rise Time [1]	(Typ.) <1.2ns (SDS2304X/ SDS2302X) (Typ.) <1.7ns (SDS2204X/ SDS2202X) (Typ.) <3.5ns (SDS2104X/ SDS2102X) (Typ.) <5.0ns (SDS2074X/ SDS2072X)
Overshoot (500ps Rise Edge)	<10%
Trigger System	
Mode	Auto, Normal, Single
Level	Internal: ±4.5div from the center of the screen EXT: ±0.6V EXT/5: ±3V
Ext Trigger Channel Input Range	Ext≤1.5Vrms Ext/5≤7.5Vrms
Holdoff Range	100ns ~ 1.5s
Coupling	AC, DC, LFRJ, HFRJ, Noise RJ (CH1~CH4)
Coupling Frequency Response (CH1~CH4) ^[2]	DC: Passes all components of the signal AC: Blocks DC components and attenuates signals below 8Hz LFRJ: Attenuates the frequency components below 900kHz HFRJ: Attenuates the frequency components above 500kHz
Coupling Frequency Response (EXT) [2]	DC: Passes all components of the signal AC: Blocks DC components and attenuates signals below 8Hz LFRJ: Attenuates the frequency components below 400kHz HFRJ: Attenuates the frequency components above 1MHz
Accuracy ^[2]	CH1 ~ CH4: ±0.2div EXT: ±0.3div
Sensitivity	CH1~ CH4: 0.6div EXT: 200mVpp (DC~ 10MHz) 300mVpp (10MHz~ BW) EXT/5: 1Vpp (DC~ 10MHz) 1.5Vpp (10MHz~ BW)
Jitter	<100ps (CH1~ CH4)
Displacement	Pre-Trigger: 0 ~ 100% memory Delay-Trigger: 0 ~ 2,000 div
Edge Trigger	
Slope	Rising, Falling, Rising&Falling
Source	CH1~CH4/EXT/(EXT/5)/AC Line
Slope Trigger	
Slope	Rising, Falling
Limit Range	<,>,<>,><
Source	CH1 ~ CH4
Time Range	2ns ~ 4.2s
Resolution	ıns

Pulse Width Trigger

Polarity + wid , -wid Limit Range <,>,<>,<>

Pulse Width Range 2ns ~ 4.2s Resolution 1ns

Video Trigger

Signal Standard NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50,

1080i/60, Custom

Source CH1~CH4
Sync Any, Select
Trigger Condition Line, Field

Window Trigger

Window Type Absolute, Relative

Source CH1~CH4

Interval Trigger

Slope Rising, Falling
Limit Range <,>,<>,<>Source CH1 \sim CH4
Time Range 2ns \sim 4.2s
Resolution 1ns

Dropout Trigger

Timeout Type Edge, State

Source CH1~CH4

Slope Rising, Falling

Time Range 2ns ~ 4.2s

Resolution 1ns

Runt Trigger

Polarity + wid , -wid Limit Range <,>,<>,<>, < CH1 \sim CH4 Time Range 2ns \sim 4.2s Resolution 1ns

Pattern Trigger

Pattern Setting Invalid, Low, High
Logic AND, OR, NAND, NOR

Source CH1 \sim CH4
Limit Range <, >, < >, < >, < <
Time Range 2ns \sim 4.2s
Resolution 1ns

Serial Trigger

IIC Trigger

Condition Start, Stop, Restart, No Ack, EEPROM, Address&Data, Data Length

Source (SDA/SCL) CH1~CH4
Data format Hex

Limit Range EEPROM: =, >, < EEPROM: 1byte

Address&Data: 1~2byte Data Length: 1~12byte

R/W bit Address&Data: Read, Write, Do not care

SPI Trigger

Data Length

Condition Data

Source (CS/CLK/Data) CH1~CH4

Data format Binary

Data Length 4 ~ 96 bit

Bit Value 0, 1, X

Bit Order LSB, MSB

UART/RS232 Trigger	
Condition	Start, Stop, Data, Parity Error
Source (RX/TX)	CH1~CH4
Data format	Hex
Limit Range	=,>,<
Data Length	1 byte
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	High, Low
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200/38400/57600/115200 bit/s
Baud Rate (Custom)	300bit/s~334000bit/s
CAN Trigger	
Туре	All, Remote, ID, ID+Data, Error
Source	CH1~CH4
ID	STD (11bit), EXT(29bit)
Data format	Hex
Data Length	1~2byte
Baud Rate (Selectable)	5k/10k/20k/50k/100k/125k/250k/500k/800k/1M bit/s
Baud Rate (Custom)	5kbit/s~1Mbit/s
LIN Trigger	
Туре	Break, Frame ID, ID+Data, Error
Source	CH1~CH4
ID	1byte
Data format	Hex
Data Length	1~2byte
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200 bit/s
Baud Rate (Custom)	300bit/s~20kbit/s

Serial Decoder (Optional)		
No. of Decoder	2	
IIC Decoder		
Signal	SCL, SDA	
Address	7bit, 10bit	
Threshold	-4.5~4.5div	
List	1~7 Lines	
SPI Decoder		
Signal	CLK, MISO, MOSI, CS	
Edge Select	Rising, Falling	
Idle Level	Low, High	
Bit Order	MSB, LSB	
Threshold	-4.5~4.5 div	
List	1 ~ 7 lines	
UART/ RS232 Decoder		
Signal	RX, TX	
Data Width	5 bit, 6 bit, 7 bit, 8 bit	
Parity Check	None, Odd, Even	
Stop Bit	1 bit, 1.5 bit, 2 bit	
Idle Level	Low, High	
Threshold	-4.5~4.5 div	
List	1 ~ 7 lines	

CAN Decoder		
Signal	CAN_H, CAN_L	
Source	CAN_H, CAN_L, CAN_H-CAN_L	
Threshold	-4.5~4.5 div	
List	1 ~ 7 lines	
LIN Decoder		
LIN Specification Package Revision	Ver1.3, Ver2.0	
Threshold	-4.5 ~ 4.5 div	
List	1 ~ 7 lines	

Source CH1~CH4, Math, Ref, History No. of Measurements Sorean, Gating Range Screen, Gating Measurement Parameters: (37 Types) Vmax Highest value in input waveform Vmin Lowest value in input waveform Vpp Difference between maximum and minimum data values Vamp Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Value of most probable linger state in a bimodal waveform Vertical (Voltage) Value of most probable lower state in a bimodal waveform Vertical (Voltage) Value of most probable lower state in a bimodal waveform Vertical (Voltage) Mean Average of all data values Mean Average of all data values in the first cycle Vida Standard deviation of all data values in the first cycle Vrms Root mean square of all data values in the first cycle Vrms Root mean square of all data values in the first cycle FPRE Overshoot before a falling edge; (base-min)/Amplitude Rov Overshoot before a falling edge; (base-min)/Amplitude Rov Post mean square of all data values in the first cycle Rov <th colspan="4">Measurement</th>	Measurement			
Range Screen, Gating Measurement Parameters (37 Types) Vmax Highest value in input waveform Vmin Lowest value in input waveform Vpp Difference between maximum and minimum data values Vamp Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Vtop Value of most probable higher state in a bimodal waveform Vbase Value of most probable lower state in a bimodal waveform Vbase Value of most probable lower state in a bimodal waveform Vman Average of all data values Vertical (Volitage) Vialue (Vialue Vialue Values of the first cycle Volutage) Vertical (Volitage) Vertica	Source	CH1~CH4, Math, Ref, History		
Measurement Parameters (37 Types)	No. of Measurements	Display 5 measurements at the same time		
Vmax Vmin Lowest value in input waveform Vpp Difference between maximum and minimum data values Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Vtop Value of most probable higher state in a bimodal waveform Vbase Value of most probable lower state in a bimodal waveform Wean Average of all data values Vmean Average of data values in the first cycle Stadev Standard deviation of all data values in the first cycle Vxtd Standard deviation of all data values Crms Root mean square of all data values in the first cycle Vms Root mean square of all data values Crms Root mean square of all data values in the first cycle PPRE Overshoot before a falling edge; (base-min)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Period Period Period or every cycle in waveform at the 50% level, and positive slope Freq Prequency for every cycle in waveform at the 50% level, and positive slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Uvidi Width measured at 50% level and negative slope Time Duration of falling edge from 90-10% Width measured at 50% level and negative slope Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Time from the first rising edge to the last falling edge, or the first falling edge at the 50% crossing Time from the trigger to the first transition at the 50% crossing	Range	Screen, Gating		
Vmin Lowest value in input waveform Vpp Difference between maximum and minimum data values Vamp Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Vtop Value of most probable higher state in a bimodal waveform Vbase Value of most probable lower state in a bimodal waveform Mean Average of all data values Vmean Average of data values Vstd Standard deviation of all data values Vstd Standard deviation of all data values Vstd Standard deviation of all data values in the first cycle Vmms Root mean square of all data values in the first cycle Vms Root mean square of all data values in the first cycle Vms Root mean square of all data values Vstd Overshoot after a falling edge; (base-min)/Amplitude Verpre Overshoot after a rising edge; (max-top)/Amplitude Verpre Overshoot before a falling edge; (max-top)/Amplitude Verpre Overshoot before a rising edge; (max-top)/Amplitude Verpre Overshoot before a first of the trigger point Verpre	Measurement Paramete	ers (37 Types)		
Vpp Difference between maximum and minimum data values Vamp Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Vtop Value of most probable higher state in a bimodal waveform Value of most probable lower state in a bimodal waveform Mean Average of all data values Vmean Average of all data values Vterical (Voltage) Vterical (Voltage) Vertical (Voltage) Ver		Vmax	Highest value in input waveform	
Vamp Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Vtop Value of most probable higher state in a bimodal waveform Value of most probable lower state in a bimodal waveform Mean Average of all data values Vmean Average of data values in the first cycle stdev Standard deviation of all data values Vstd Standard deviation of all data values Crms Root mean square of all data values in the first cycle Vmms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Howid Width measured at 50% level and positive slope Width measured at 50% level and positive slope Fired Rise Time Duration of rising edge from 10-90% Fall Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Fout Put Ratio of positive width to period First transition at the 50% crossing		Vmin	Lowest value in input waveform	
Vtop Value of most probable higher state in a bimodal waveform		Vpp	Difference between maximum and minimum data values	
Value of most probable lower state in a bimodal waveform Mean Average of all data values Vmean Average of data values in the first cycle stdev Standard deviation of all data values Vstd Standard deviation of all data values in the first cycle Vrms Root mean square of all data values in the first cycle Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising		Vamp	Difference between top and base in a bimodal signal, or between max and min in an unimodal signal	
Vertical (Voltage) Mean Average of all data values Vertical (Voltage) Stdev Standard deviation of all data values Vstd Standard deviation of all data values in the first cycle Vrms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot before a filling edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (max-top)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope Horizontal (Time) Rise Time Duration of rising edge from 10-90% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge adge at the 50% crossing +Dut Ratio of positive width to period -Dut Positive width to period -Dut Tim		Vtop	Value of most probable higher state in a bimodal waveform	
Vertical (Voltage) Viewan Average of data values in the first cycle stdev Standard deviation of all data values Vstd Standard deviation of all data values in the first cycle Vrms Root mean square of all data values Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising edge foom at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Fill Time Duration of falling edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing FOUT ONLY State of the state of the period o		Vbase	Value of most probable lower state in a bimodal waveform	
Standard deviation of all data values Vstd Vstd Standard deviation of all data values in the first cycle Vrms Root mean square of all data values in the first cycle Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV RPRE Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Width measured at 50% level and positive slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Put Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		Mean	Average of all data values	
Vstd Standard deviation of all data values Vstd Standard deviation of all data values in the first cycle Vrms Root mean square of all data values in the first cycle Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Width measured at 50% level and positive slope Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing	Varities (Otalia ass)	Vmean	Average of data values in the first cycle	
Vrms Root mean square of all data values Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing	verticai (voitage)	stdev	Standard deviation of all data values	
Crms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Rise Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the first transition at the 50% crossing		Vstd	Standard deviation of all data values in the first cycle	
FOV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Bill Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		Vrms	Root mean square of all data values	
FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (max-top)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		Crms	Root mean square of all data values in the first cycle	
ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period of revery cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		FOV	Overshoot after a falling edge; (base-min)/Amplitude	
RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X The voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		FPRE	Overshoot before a falling edge; (max-top)/Amplitude	
Level@X The voltage value of the trigger point Period Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		ROV	Overshoot after a rising edge; (max-top)/Amplitude	
Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		RPRE	Overshoot before a rising edge; (base-min)/Amplitude	
Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		Level@X	The voltage value of the trigger point	
+Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing		Period	Period for every cycle in waveform at the 50% level, and positive slope	
-Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing		Freq	Frequency for every cycle in waveform at the 50% level, and positive slope	
Horizontal (Time) Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		+Wid	Width measured at 50% level and positive slope	
Horizontal (Time) Fall Time Duration of falling edge from 90-10% Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		-Wid	Width measured at 50% level and negative slope	
Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Delay Time from the trigger to the first transition at the 50% crossing		Rise Time	Duration of rising edge from 10-90%	
Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing	Horizontal (Time)	Fall Time	Duration of falling edge from 90-10%	
-Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing	()	Bwid		
Delay Time from the trigger to the first transition at the 50% crossing		+Dut	Ratio of positive width to period	
, , , , , , , , , , , , , , , , , , , ,		-Dut	Ratio of negative width to period	
Time@Level Time from trigger of each transition at a specific level and slope		Delay	Time from the trigger to the first transition at the 50% crossing	
		Time@Level	Time from trigger of each transition at a specific level and slope	

Measurement		
	Phase	Calculate the phase difference between two edges
	FRR	Time between the first rising edges of the two channels
	FRF	Time from the first rising edge of channel A, to the first falling edge of channel B
	FFR	Time from the first falling edge of channel A, to the first rising edge of channel B
Delay	FFF	Time from the first falling edge of channel A, to the first falling edge of channel B
	LRR	Time from the first rising edge of channel A, to the last rising edge of channel B
	LRF	Time from the first rising edge of channel A, to the last falling edge of channel B
	LFR	Time from the first falling edge of channel A, to the last rising edge of channel B
	LFF	Time from the first falling edge of channel A, to the last falling edge of channel B
Cursors	Manual : Time X1, X2, $(X1-X2)$, $(1/\Delta T)$ Voltage Y1, Y2, $(Y1-Y2)$ Track: Time X1, X2, $(X1-X2)$	
Statistics	Current, Mean, Min, Max, Std-Dev, Count	
Counter	±1Hz counter error	

Math	
Operation	+, -, *, /, FFT, d/dt, ∫dt, square root
FFT Window	Rectangular, Blackman, Hanning, Hamming
FFT Display	Full Screen, Split

Built-in Function/Arbit	rary Waveform Generator (Optional)
Channel	1
Max. Output Frequency	25MHz
Sampling Rate	125 MSa/s
Frequency Resolution	1 μHz
Frequency Accuracy	±50 ppm
Vertical Resolution	14 bits
Amplitude Range	$2mVpp \sim 3Vpp$ (into $50Ω$) $4mVpp \sim 6Vpp$ (into HiZ)
Waveforms	Sine, Square, Ramp, Pulse, DC, Noise, Cardiac, Gaus Pulse, Exp Rise, Exp Fall, Arb
Output Impedance	50Ω±2%
Protection	Short-Circuit Protection
Sine	
Frequency	$1\mu Hz \sim 25 MHz$
Offset Accuracy (100 kHz)	±(0.3dB* offset setting value +1mVpp)
Amplitude Flatness (Compare to 100 kHz, 5Vpp)	±0.3 dB
SFDR	DC ~ 1 MHz -60dBc 1 MHz ~ 5 MHz -55dBc 5 MHz ~ 25 MHz -50dBc
HD	DC-5 MHz -50dBc 5 MHz - 25MHz -45dBc

Square/Pulse

Frequency $1 \mu Hz \sim 10 MHz$ Duty Cycle $20\% \sim 80\%$

Rise/Fall time < 24 ns (10% \sim 90%) Overshoot < 3% (typical, 1KHz, 1Vpp)

Pulse Width > 50ns

Jitter (Cycle to Cycle) < 500ps + 10ppm

Ramp

Frequency $1\mu Hz \sim 300 kHz$

Linearity (Typical) < 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)

Symmetry $0\% \sim 100\%$

DC

Offset range $\begin{array}{c} \pm 1.5 \text{V (into } 50 \Omega) \\ \pm 3 \text{ V (into } \text{HiZ)} \\ \text{Accuracy} \\ \end{array}$ $\pm (|\text{offset}| *1\% + 3 \text{ mV})$

Noise

Bandwidth >25MHz (-3dB)

Arb

Frequency $1\mu Hz \sim 5 MHz$ Wave Length 16 Kpts Sampling Rate 125 MSa/s Waveform Import EasyWave, U-Disk

Digital Channels

No. of Channels16Max. Sampling Rate500MSa/sMemory Depth14Mpts/CHMin. Detectable Pulse Width4ns

Level Group D0~D7,D8~D15
Level Range -3V~3V

Logic Type TTL, CMOS, LVCMOS3.3, LVCMOS2.5, custom

D0~D15: ±1 sampling interval

Skew[2] Digital to Analog: ± (1 sampling interval +1ns)

I/O

Standard USB Host, USB Device, LAN, Pass/Fail, Trigger Out

Pass/Fail 3.3V TTL Output

Display

 Display Type
 8-inch TFT LCD

 Resolution
 800×480

 Color
 24 bit

 Contrast
 500:1

 Backlight
 300nit

 Range
 8 x 14 divisions

Waveform Display

Type Dot, Vector

Persistence Time OFF, 1s, 5s, 10s, 30s, infinite

Color Display Normal, Color

Screen Saver 1min, 5min, 10min, 30min, 1hour, OFF

Language	
Language	Simplified Chinese Traditional Chinese English French Japanese Korean German Russian Italian Portuguese

Environments		
Temperature	Operating: 10° C ~ 40° C Non-operating: -20° C ~ 60° C	
Humidity	Operating: 85% RH, 40° C , 24 hours Non-operating: 85% RH, 65° C , 24 hours	
Altitude	Operating: ≤3,000m Non-operating: ≤15,266m	
Electromagnetic Compatibility	2004/108/EC Execution Standard EN 61326-1:2006 EN 61000-3-2:2006 + A2:2009, EN 61000-3-3:2008	
Safety	2006/95/EC Execution Standard EN 61010-1:2010/EN 61010-2-030:2010	

Power Supply		
Input Voltage & Frequency	100 ~ 240 Vrms 50/60Hz	
	100 ~ 120 Vrms 400Hz	
Power	60W Max	

Mechanical		
Dimensions	Length* Width*Height = 352mm*128mm*224mm	
Weight	N.W 3.4 Kg(2-ch); 3.6 Kg(4-ch) G.W 4.9 Kg(2-ch); 5.2 Kg(4-ch)	

Single-channel: one channel in CH1/CH2 (or CH3/CH4) is ON and another is OFF Dual-channel: both channels in CH1/CH2 (or CH3/CH4) are ON Typical Value refers to the tested value under specific conditions. It might vary with the ambient temperature or other conditions Note[1]

Note[2]

SDS2000X Probes

Probe type	Model	Picture	Description
	PB470		PB470, 70MHz bandwidth, 1X/10X (SDS2072X/SDS2074X)
Passive	PP510		PP510, 100MHz bandwidth, 1X/10X (SDS2102X/SDS2104X) SP2030A, 300MHz bandwidth, 10X (SDS2202X/SDS2204X, SDS2302X/
	SP2030A		SDS2304X)
Logic Probe	SPL2016		16 Channel Logic Probe
Current	CP4020		Bandwidth: 100KHz , Max. continuous current: 20Arms, Peak current: 60A Switch Ratio: 50mV/A, 5mV/A, Accuracy: 50mV/A (0.4A-10ApK)±2%, 5mV/A (1A-60ApK) ±2%, 9V battery source
	CP4050		Bandwidth: 1MHz , Max. continuous current: 50Arms, Peak current: 140A Switch Ratio: 500mV/A, 50mV/A Accuracy: 500mV/A (20mA-14ApK)±3%±20mA , 50mV/A (200mA-100ApK) ±4%±200mA, 50mV/A (100A-140ApK) ±15%max, 9V battery source
	CP4070		Bandwidth: 150KHz , Max. continuous current: 70Arms, Peak current: 200A Switch Ratio: 50mV/A, 5mV/A, Accuracy: 50mV/A (0.4A-10ApK)±2% , 5mV/A (1A-200ApK) ±2%, 9V battery source
	CP4070A		Bandwidth: 300KHz , Max. continuous current: 70Arms, Peak current: 200A Switch Ratio: 100mV/A, 10mV/A, Accuracy: 100mV/A (50mA-10ApK)±3%±50mA , 10mV/A (500mA-40ApK) ±4%±50mA, 10mV/A (40A-200ApK) ±15% max., 9V battery source
	CP5030		Bandwidth: 50MHz , Max. continuous current: 30Arms, Peak current: 50A Switch Ratio: 100 mV/A, 1 V/A, Accuracy: 1 V/A (± 1 % ± 1 mA), 100 mV/A (± 1 % ± 10 mA), DC12V/1.2A power adapter
	CP5030A		Bandwidth: 100MHz , Max. continuous current: 30Arms , Peak current: 50A Switch Ratio: 100mV/A , 1V/A , Accuracy: 1V/A ($\pm 1 \% \pm 1 \text{mA}$), 100mV/A ($\pm 1 \% \pm 10 \text{mA}$), DC12V/1.2A power adapter
	CP5150		Bandwidth: 12MHz , Max. continuous current: 150Arms, Peak current: 300A Switch Ratio: 100mV/A, 10mV/A, Accuracy: 100mV/A (±1%±10mA), 10mV/A (±1%±100mA), DC12V/1.2A power adapter
	CP5500		Bandwidth: 5MHz , Max. continuous current: 500Arms, Peak current: 750A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A ($\pm 1\% \pm 10$ mA), 10 mV/A ($\pm 1\% \pm 100$ mA), DC12V/1.2A power adapter
High Voltage Differential	DPB4080	O BY NO.	Bandwidth: 50MHz, Differential Range: 800V (DC + Peak AC), 100X/200X/500X/1000X, Accuracy: ±1%, DC 9V/1A power adapter
	DPB5150		Bandwidth: 70MHz, Differential Range: 1500V (DC + Peak AC),50X/500X Accuracy: ±2%, DC 5V/1A USB adapter
	DPB5150A		Bandwidth: 100MHz, Differential Range: 1500V (DC + Peak AC), 50X/500X , Accuracy: ±2% DC 5V/1A USB adapter

Probe type	Model	Picture	Description
High Voltage	DPB5700		Bandwidth: 70MHz, Differential Range: 7000V (DC + Peak AC), 100X/1000X , Accuracy: ±2%, DC 5V/1A USB adapter
Differential	DPB5700A	Bandwidth: 100MHz Differential Range: 7000V (DC + Peak AC), 100X/1000X Accuracy: ±2% DC 5V/1A USB adapter	Differential Range: 7000V (DC + Peak AC), 100X/1000X Accuracy: ±2%
High Voltage	HPB4010		Bandwidth: 40MHz Differential Range: DC 10KV, AC (rms): 7KV (sine), AC (Vpp): 20KV (Pulse) 1000X Accuracy: ≤3%

Ordering Information

Description	Model
300MHz, 4CH, 2GSa/s (Max.), 140Mpts	SDS2304X
300MHz, 2CH, 2GSa/s (Max.), 140Mpts	SDS2302X
200MHz, 4CH, 2GSa/s (Max.), 140Mpts	SDS2204X
200MHz, 2CH, 2GSa/s (Max.), 140Mpts	SDS2202X
100MHz, 4CH, 2GSa/s (Max.), 140Mpts	SDS2104X
100MHz, 2CH, 2GSa/s (Max.), 140Mpts	SDS2102X
70MHz, 4CH, 2GSa/s (Max.), 140Mpts	SDS2074X
70MHz, 2CH, 2GSa/s (Max.), 140Mpts	SDS2072X

Standard Accessories

USB Cable -1

Passive Probe -2 (2-ch model); -4 (4-ch model)

Power Cord -1

Quick Start -1

Certificate of Calibration -1	
Optional Accessories	
SDS-2000X-DC	IIC, SPI, UART/RS232, CAN, LIN Decoder
SDS-2000X-FG	25MHz Function/Arbitrary Waveform Generator
SDS-2000X-PA	Power Analyze Software
SDS-2000X-16LA	16 Digital Channels (Software)
SPL2016	16 Channel Logic Probe
ISFE	Isolated Front End
STB	STB3
DF2001A	Power analysis Deskew Fixture
HPB4010	High Voltage Probe
CP4020/CP4050/CP4070/ CP4070A/CP5030/ CP5030A/CP5150/CP5500	Current Probe
DPB4080/DPB5150/ DPB5150A/DPB5700/ DPB5700A	High Voltage Differential Probe

SDS2000X Series Super Phosphor Oscilloscope

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, RF generators, digital multimeters, DC power supplies, spectrum analyzers, vector network analyzers, isolated handheld oscilloscopes, electronic load and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarters:

SIGLENT Technologies Co., Ltd Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China

Tel: + 86 755 3688 7876 Fax: + 86 755 3359 1582 Email: sales@siglent.com Website: int.siglent.com

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800

Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentna.com

Europe

SIGLENT Technologies Germany GmbH Add: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany

Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

