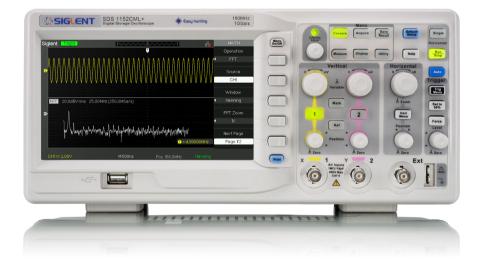
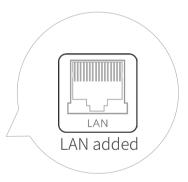


SDS1000DL+/CML+ Series Digital Oscilloscope

SIGLENT TECHNOLOGIES CO.,LTD

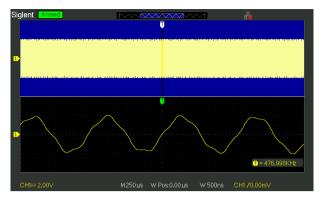

SDS1052DL+ SDS1072CML+ SDS1102CML+ SDS1152CML+


Product overview

SDS1000DL+/CML+ series is a dual-channel universal digital oscilloscope, available in 50 MHz, 70 MHz, 100 MHz and 150 MHz bandwidth models. It includes a 2 Mpts memory depth that helps to ensure accurate waveform resolution and to capture longer signal lengths. With its 7 inch TFT-LCD (800*480) screen, there is adequate screen space to help better see and analyze waveform details. Along with a 1 GSa/s sampling rate, the SDS1000CML+ supports 32 parameters measurements and common mathematical operations to speed up complex / repetitive measurements.

Key Features

- 사 150 MHz, 100 MHz, 70 MHz, 50 MHz bandwidth models
- Real-time sampling rate up to 1 GSa/s, Equivalent-time sampling rate up to 50 GSa/s
- Memory Depth up to 2 Mpts
- 사 Trigger types: Edge, Pulse, Video, Slope, Alternate
- ₩ Waveform math functions:+, -, *, /, FFT
- 🜆 6 digital frequency counter
- 🜆 Supports Multi-language display and embedded online help
- Je Digital filter and waveform recorder function
- 🜆 Shortcut storage function key
- ♣ 7 inch TFT-LCD display with 800 * 480 resolution
- Multiple interfaces: USB Host, USB Device (USBTMC), LAN (VXI-11), Pass / Fail



Models and Key Specifications

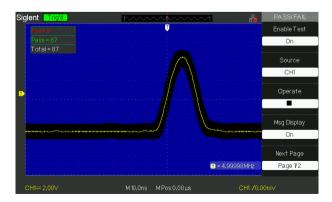
Model	SDS1052DL+	SDS1072CML+	SDS1102CML+	SDS1152CML+
Bandwidth	50 MHz	70 MHz	100 MHz	150 MHz
Sampling Rate (Max.)	500 MSa/s	1 GSa/s		
Channels	2+EXT	2+EXT		
Memory Depth (Max.)	32 Kpts 2 Mpts			
Trigger Types	Edge, Pulse, Video, Slope, Alterr	ate		
I/O	USB Host, USB Device, LAN, Pass/Fail			
Probe (Std)	2 pcs passive probe, PB470		2 pcs passive probe, PP510	2 pcs passive probe, PP215
Display	7 inch TFT LCD (800x480)			
Net Weight	2.5 Kg			

Function & Characteristic

Memory Depth up to 2 Mpts

Normal Memory (40 Kpts)

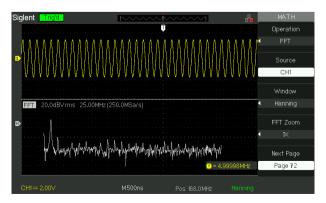
Long Memory (2 Mpts)


Using the long memory mode, users are able to use a higher sampling rate to capture more of the signal, and quickly zoom to focus on the area of interest.

32 parameters auto measurements and 5 parameters display

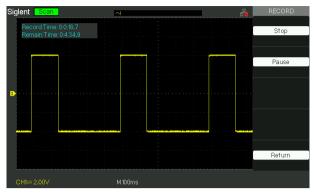
The SDS1000DL+/CML+ support voltage, time and delay measurement types, with a total of 32 different parameters. The user is able to select five measurements to display on the screen. All measurement parameters can also be displayed simultaneously.

Pass/Fail Function


With easy to generate user-defined test templates, the SDS1000DL+/ CML+ compares the current measured trace to the template mask trace making it suitable for long-term signal monitoring or automated production line testing.

Zoom Function

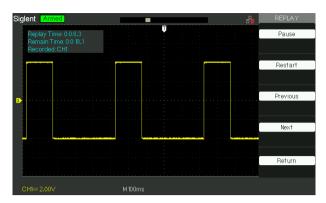
Zoom can extend a partial segment of the waveform, giving the user not only an overview of the whole signal but also a detailed view of the zoomed-in segment. The Zoom feature is a convenient way to locate a specific segment of a signal while zooming in to see the details.


📕 Math Function

SDS1000DL+/CML+ provides 5 kinds of math operation: +, -, *, /, FFT, supporting channel waveform and FFT waveform in either split display windows or both signals appearing on the full screen.

Characteristics

🜆 Digital Recorder


The digital recorder is able to record data in real-time and without any dead time. SDS1000DL+/CML+ supply 7 M of memory for the recorder and support a USB disk.

🜆 Embedded Online Help

Supports Multi-language display and embedded online help, familiarizes the user with all the functions of in a short time.

Specifications

Replaying the data for user to observe and analyze.

Abundant interfaces

SDS1000DL+/CML+ support USB Host, USB Device (USBTMC), LAN (VXI-11), Pass / Fail.

Acquire System		
Real-time Sampling Rate	SDS1052DL+ : 500 MSa/s SDS1072CML+/SDS1102CML+/SDS1152CML+ : 1 GSa/s	
Memory Depth	SDS1052DL+: 32 Kpts SDS1072CML+/SDS1102CML+/SDS1152CML+:40 Kpts (Normal Mode);2 Mpts (Long Memory Mode)	
Acquire Mode	Normal, Peak Detect, Average	
Average	Averages: 4, 16, 32, 64, 128, 256	
Waveform interpolation	Sinx,X	
Input		
Channel	2	
Coupling	DC, AC, GND	
Impedance	$D_{C_{1}}(1 MO \pm 20) $	
Impedance	DC: $(1 M\Omega \pm 2\%) (18 \text{ pF} \pm 3 \text{ pF}) (18 \text{ pF} $	
Max. Input voltage	400 V, 1 MΩ	

Horizontal System			
	150 MHz 2.5 ns/div - 50 s/div		
Timebase Scale	100 MHz 2.5 ns/div - 50 s/div 70 MHz 5.0 ns/div - 50 s/div 50 MHz 5.0 ns/div - 50 s/div		
Channel Skew	<500 ps		
Display Format	Y-T, X-Y, Scan		
Timebase Accuracy	±50 ppm		
Scan Mode	100 ms/div ~ 50 s/div		
Vertical System			
	150 MHz (SDS1152 CML+)		
Bandwidth (-3 dB)	100 MHz (SDS1102 CML+) 70 MHz (SDS1072 CML+) 50 MHz (SDS1052 DL+)		
Vertical Resolution	8 bit		
Vertical Scale (Probe 1 X)	2 mV/div - 10 V/div (1-2-5)		
Offset Range (Probe 1 X)	2 mV - 200 mV: \pm 1.6 V; 206 mV ~ 10 V: \pm 40 V		
Bandwidth Limit	20 MHz ±40%		
Bandwidth Flatness	DC - 10%(BW): ± 1 dB 10% - 50%(BW): ± 2 dB 50% - 100%(BW): + 2 dB/-3 dB		
Low Frequency Response (AC-3 dB)	\leqslant 10 Hz (at input BNC)		
Noise	$\begin{array}{l} \text{STDEV} \leqslant 0.6 \text{ div} \ (\geq 5 \text{ mV/div}) \\ \text{STDEV} \leqslant 0.7 \text{ div} \ (2 \text{ mV/div}) \end{array}$		
DC Gain Accuracy	$\leq \pm 3.0\%$: 5 mV/div ~10 V/div $\leq \pm 4.0\%$: ≤ 2 mV/div		
DC Measurement Accuracy	$ \pm [3\%\times (reading + offset) +1\%\times offset +0.2 \text{ div}+2 \text{ mV}], \leq 100 \text{ mV/div} \\ \pm [3\%\times (reading + offset) +1\%\times offset +0.2 \text{ div}+100 \text{ mV}], >100 \text{ mV/div} $		
Rise time	Typical 2.3 ns (SDS1152 CML+) Typical 3.5 ns (SDS1102 CML+) Typical 5.0 ns (SDS1072 CML+) Typical 7.0 ns (SDS1052 DL+)		
Overshoot (500 ps Pulse)	<10%		
Trigger System			
Trigger Mode	Auto, Normal, Single		
Trigger Level Range	Internal: ±6 divisions from center of screen EXT: ±1.2 V EXT/5: ±6 V		
Hold off Range	100 ns ~ 1.5 s		
Trigger Coupling	AC, DC, LF Rej, HF Rej		
Trigger Sensitivity	1 Divisions: DC-10 MHz 1.5 Divisions: 10 MHz - Max BW		
Trigger Displacement	Pre-trigger: Memory depth/ (2*sampling) Delay Trigger: 260 div		
Edge Trigger			
Slope	Rising, Falling, Rising & Falling		
Source	CH1/CH2/EXT/(EXT/5)/AC Line		
Slope Trigger			
Slope	Rising, Falling		
Limit Range	<,>,=		
Source	5.5 CH1/CH2		
Time Range			
	20 ns ~ 10 s		
Pulse Trigger			
Pulse Trigger Polarity	+wid , -wid		
Pulse Trigger Polarity Limit Range	+wid , -wid <, >, =		
Pulse Trigger Polarity Limit Range Source	+wid , -wid <, >, = CH1/CH2		
Pulse Trigger Polarity Limit Range Source Pulse Range	+wid , -wid <, >, =		
Pulse Trigger Polarity Limit Range Source Pulse Range Video Trigger	+wid , -wid <, >, = CH1/CH2 20 ns - 10 s		
Pulse Trigger Polarity Limit Range Source Pulse Range Video Trigger Signal Standard	+wid , -wid +wid , -wid <,>, = CH1/CH2 20 ns - 10 s NTSC, PAL/Secam		
Pulse Trigger Polarity Limit Range Source Pulse Range Video Trigger	+wid , -wid <, >, = CH1/CH2 20 ns - 10 s		

Measure System	m				
Source	CH1, CH2				
Measurement Para	meters (32 Typ	bes)			
Vertical (Voltage)	Vmax	Highest value in input waveform			
	Vmin	Lowest value in input waveform			
	Vpp	Difference between maximum and minimum data values			
	Vamp	Difference between top and base in a bimodal signal ,or between max and min in an unimodal signal			
	Vtop	Value of most probable higher state in a bimodal waveform			
	Vbase	Value of most probable lower state in a bimodal waveform			
	Mean	Average of all data values			
	Vmean	Average of data values in the first cycle (Condition: there is an entire period)			
	Vrms	Root mean square of all data values			
	Crms	Root mean square of all data values in the first cycle (Condition: there is an entire period)			
	FOV	Overshoot after a falling edge; (base-min)/Amplitude			
	FPRE	Overshoot before a falling edge; (max-top)/Amplitude			
	ROV	Overshoot after a rising edge;(max-top)/Amplitude			
	RPRE	Overshoot before a rising edge; (base-min)/Amplitude			
Horizontal (Time)	Period	Period for every cycle in waveform at the 50% level ,and positive slope			
	Freq	Frequency for every cycle in waveform at the 50% level, and positive slope			
	+Wid	Width measured at 50% level and positive slope			
	-Wid	Width measured at 50% level and negative slope			
	Rise Time	Duration of rising edge from 10-90%			
	Fall Time	Duration of falling edge from 90-10%			
	Bwid	Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing			
	+Dut	Ratio of positive width to period			
	-Dut	Ratio of negative width to period			
	Phase	Calculates the phase difference between two edges (Condition: there is an entire period)			
	FRR	Time between the first rising edges of the two channels			
	FRF	Time from the first rising edge of channel A ,to the first falling edge of channel B			
Dula	FFR	Time from the first falling edge of channel A ,to the first rising edge of channel B			
Delay	FFF	Time from the first falling edge of channel A ,to the first falling edge of channel B			
	LRR	Time from the first rising edge of channel A to the last rising edge of channel B (Condition: there is an entire period)			
	LRF	Time from the first rising edge of channel A, to the last falling edge of channel B (Condition: there is an entire period)			
	LFR LFF	Time from the first falling edge of channel A, to the last rising edge of channel B (Condition: there is an entire period)			
Cursors					
Counter	Manual mode, Track mode and Auto mode				
Counter	Hardware Counter (Resolution 1 Hz)				

Math Function		
Operation	+, -, *, /, FFT	
FFT	Rectangular, Blackman, Hanning, Hamming	
FFT display	Full Screen, Split	

Save/Recall	
	Setting, Waveform, Bmp, CSV
Туре	2 refs, 20 settings, 10 waveforms internal Save to USB disk

I/O			
Standard I/O	USB Host, USB Device, LAN, Pass/Fail		
Pass/Fail	3.3 V TTL Output		
Display (Screen)			
Display Type	7 inch TFT-LCD		
Display Resolution	800×480		
Display Color	24 bit		
Contrast (Typical)	500:1		
Backlight	300 nit		
Wave display range	8 x 16 div		
Wave Display Mode	Dots, Vectors		
Persist	Off, 1 s, 2 s, 5 s, Infinite		
Menu Display	2 sec, 5 sec, 10 sec, 20 sec, Infinite		
Screen-Saver	Off, 1 min, 2 min, 5 min, 10 min, 15 min, 30 min, 1 hour, 2 hour, 5 hour		
Color mode	Normal , Invert		
Language	English, Simplified Chinese, Traditional Chinese, Arabic, French, German, Russian, Portuguese Spanish, Japanese, Korean, Italian		

Environments	
Temperature	Operating: 10 °C \sim +40 °C Non-operating: -20 °C \sim +60 °C
Humidity	Operating: 85% RH, 40 °C , 24 Hours Non-operating: 85% RH, 65 °C , 24 Hours
Height	Operating: ≤ 3000 m Non-operating: ≤ 15,266 m

Power Supply		
	100 ~ 240 Vrms 50/60 Hz 100 ~ 120 Vrms 400 Hz	
Power	50 W Max	

Mechanical

Dimensions	Length 323.1 mm Width 135.6 mm Height 157 mm
Weight	N.W: 2.5 Kg

Probes & Accessories

Туре	Model	Picture	Specifications
	PB470		70 MHz Bandwidth 1 X/10 X,1 M/10 Mohm, 300 V/600 V
Passive Probe	PP510	Cont.	100 MHz Bandwidth 1 X/10X, 1 M/10 Mohm, 300 V/600 V
	PP215		200 MHz Bandwidth 1 X/10X,1 M/10 Mohm, 300 V/600 V
	CP4020		Bandwidth: 100 KHz, Max. continuous current: 20 Arms, Peak current: 60 A Switch Ratio: 50 mV/A, 5 mV/A, Accuracy: 50 mV/A (0.4A-10ApK) \pm 2%, 5 mV/A (1A-60ApK) \pm 2%, 9 V battery source
	CP4050		Bandwidth: 1 MHz; Maximum continuous current 50 Arms; Peak current 140 A; Switching ratio: 500 mV/A; 50 mV/A; DC measurement accuracy: 500 mV/A (20 mA-14 ApK) ±3%±20 mA; 50 mV/A (200 mA-100 ApK)±4%± 200 mA; 50 mV/A (100 A-140 ApK)±15% max; 9 V battery-powered
	CP4070		Bandwidth: 150 KHz; Maximum continuous current 70 Arms; Peak current 200 A;Switching ratio: 50 mV/A; 5 mV/A; DC measurement accuracy: 50 mV/A (0.4 A-10 ApK) ±2%, ±5 mV/A (1 A-200 ApK)±2%; 9 V battery-powered
Current Probe	CP4070A		Bandwidth: 300 KHz; Maximum continuous current 70 Arms; Peak current 200 A;Switching ratio: 100 mV/A;10 mV/A; DC measurement accuracy: 100 mV/A (50 mA-10 ApK) ±3%±50 mA; 10 mV/A (500 mA-40 ApK) ±4%±50 mA; 10 mV/A (40 A-200 ApK) ±15%max; 9 V battery-powered
	CP5030		Bandwidth: 50 MHz; Maximum continuous current 30 Arms; Peak current 50 A;Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (\pm 1% \pm 1 mA); 100 mV/A (\pm 1% \pm 10 mA); Standard DC12 V/1.2 A power adapter
	CP5030A		Bandwidth: 100 MHz; Maximum continuous current 30 Arms; Peak current 50 A;Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 1 A (\pm 1% \pm 1 mA); 100 mV/A (\pm 1% \pm 10 mA); Standard DC12 V/1.2 A power adapter
	CP5150		Bandwidth: 12 MHz; Maximum continuous current 150 Arms; Peak current 300 A;Switching ratio: 100 mV/A, 1 V/A; AC/DC measurement accuracy: 100 mV/A(\pm 1% \pm 1 mA); 10 mV/A (\pm 1% \pm 10 mA); Standard DC12 V/1.2 A power adapter
	CP5500		Bandwidth: 5 MHz; Maximum continuous current 500 Arms; Peak current750 A; Switching ratio: 100 mV/A, 10 mV/A; AC/DC measurement accuracy: 100 mV/A (\pm 1% \pm 1 mA); 10 mV/A (\pm 1% \pm 10 mA); Standard DC12 V/1.2 A power adapter
High Voltage Differential Probe	DPB4080		Bandwidth: 50 MHz; Maximum input differential voltage 800 V (DC + Peak AC); Range selection (attenuation ratio):10 X/100 X; Accuracy: ±1%; Standard DC 9 V/1 A power adapter
	DPB5150		Bandwidth: 70 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5150A		Bandwidth: 100 MHz; Maximum input differential voltage 1500 V (DC + Peak AC); Range selection (attenuation ratio): 50 X/500 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter

Туре	Model	Picture	Specifications
High Voltage Differential Probe	DPB5700		Bandwidth: 70 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
	DPB5700A		Bandwidth: 100 MHz; Maximum input differential voltage 7000 V (DC + Peak AC); Range selection (attenuation ratio): 100 X/1000 X; Accuracy: ±2%; Standard 5 V/1 A USB power adapter
High Voltage Probe	HPB4010		Bandwidth: 40 MHz; Maximum measurement voltage DC: 10 KV; AC (rms) : 7 KV (sine) ;AC (Vpp) :20 KV (Pulse); attenuation ratio1:1000; Accuracy: ≤ 3%
Isolated front end	ISFE		USB 5 V power supply, plug and play, the maximum input voltage 600 Vp-p, floating test. Work with oscilloscopes.
Demo board	STB3		Optional accessories For experimental teaching and product demos

Ordering information

Description	Model
50 MHz, 2 CH, 500 MSa/s (Max.) , 32 Kpts, 7 inch (800*480) LCD	SDS1052DL+
70 MHz, 2 CH, 1 GSa/s (Max.) , 2 Mpts, 7 inch (800*480) LCD	SDS1072CML+
100 MHz, 2 CH, 1 GSa/s (Max.) , 2 Mpts, 7 inch (800*480) LCD	SDS1102CML+
150 MHz, 2 CH, 1 GSa/s (Max.) , 2 Mpts, 7 inch (800*480) LCD	SDS1152CML+
Standard Accessories	
USB Cable -1	
Quick Start -1	
Certificate of Calibration -1	
Passive Probe -2	
Power Cord -1	
Optional Accessories	
Isolated Front End	ISFE
STB Demo board	STB3
High Voltage Probe	HPB4010
Current Probe	CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/ CP5150/CP5500
Differential Probe	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A

SDS1000DL+/CML+ Series Digital Oscilloscope

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, RF generators, digital multimeters, DC power supplies, spectrum analyzers, vector network analyzers, isolated handheld oscilloscopes, electronic load and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

Headquarters:

SIGLENT Technologies Co., Ltd Add: Bldg No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China Tel: + 86 755 3688 7876 Fax: + 86 755 3359 1582 Email: sales@siglent.com Website: int.siglent.com

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free: 877-515-5551 Fax: 440-399-1211 Email: info@siglent.com Website: www.siglentna.com

Europe:

SIGLÉNT Technologies Germany GmbH Add: Liebigstrasse 2-20, Gebaeude 14, 22113 Hamburg Germany Tel: +49(0)-819-95946 Fax: +49(0)-819-95947 Email: info-eu@siglent.com Website: www.siglenteu.com Follow us on Facebook: SiglentTech

