SDG2000X Series
Function/Arbitrary Waveform Generator
Service Manual
SM0202X-E01B
Guaranty and Declaration

Copyright

SIGLENT TECHNOLOGIES CO., LTD. All Rights Reserved.

Trademark Information

SIGLENT is the registered trademark of SIGLENT TECHNOLOGIES CO., LTD

Declaration

● SIGLENT products are protected by patent law in and outside of P.R.C.
● SIGLENT reserves the right to modify or change parts of or all the specifications or pricing policies at company’s sole decision.
● Information in this publication replaces all previously corresponding material.
● Any form of copying, extracting or translating the contents of this manual is not allowed without the permission of SIGLENT.
● SIGLENT will not be responsible for losses caused by either incidental or consequential in connection with the furnishing, use or performance of this manual as well as any information contained.

Product Certification

SIGLENT guarantees this product conforms to the national and industrial standards in China as well as the ISO9001: 2008 standard and the ISO14001: 2004 standard. Other international standard conformance certification is in progress.
General Safety Summary

Carefully read the following safety precautions to avoid any personal injuries or damages to the instrument and any product connected to it. To avoid potential hazards, please use the instrument as specified.

Only qualified technical personnel should service this instrument.

Avoid fire or open flame.

Use properly rated power line connections.

Use only the specified power line which has been approved by your local regulatory agency.

Ground the Instrument.

The instrument is grounded through the protective ground conductor of the power line. To avoid electric shock, the ground conductor must be connected to the earth ground. Make sure the instrument is grounded correctly before connecting its input or output terminals.

Connect the signal wire correctly.

The potential of the signal wire ground is equal to the earth, therefore do not connect the signal wire to a high voltage. Do not touch the exposed contacts or components.

Observe all terminal ratings.

To avoid fire or electric shock, please observe all ratings and label instructions on the instrument. Before connecting the instrument, please read the manual carefully to gain more information about the ratings.

Do not operate with suspected failures.

If you suspect that the product is damaged, please allow only qualified service personnel to troubleshoot and repair it.

Avoid circuit or wire exposure.

Do not touch exposed contacts or components when the power is on.

Do not operate in wet/damp conditions.

Do not operate in an explosive atmosphere.

Keep the surface of the instrument clean and dry.

Safety Terms and Symbols

Terms used on the instrument. Terms may appear on the instrument:

DANGER: Indicates an injury or hazard that may immediately happen.

WARNING: Indicates an injury or hazard that may not immediately happen.

CAUTION: Indicates that a potential damage to the instrument or other property might occur.

Symbols used on the instrument. Symbols may appear on the instrument:

- !: Hazardous
- : Protective
- !: Warning
- : Chassis
- (): Power
- : Voltage
- : Earth Ground
- : Ground
- : Switch
Catalog

Guaranty and Declaration .. II
General Safety Summary .. III
Overview of this Document .. VI
The SDG2000X Series Generator at a Glance VIII
The Front Panel at a Glance ... IX
The Rear Panel at a Glance .. XII
Chapter 1 Specifications ... 13
Chapter 2 Quick Start ... 21
 To Prepare the Generator for Use .. 22
 To Adjust the Carrying Handle ... 23
 To Set the Output Frequency ... 24
 To Set the Output Amplitude .. 26
 To Set the DC offset ... 28
 To Set the Duty Cycle of a Square Waveform 30
 To Set the Symmetry of a Ramp Waveform 32
 To Generate a Pulse Waveform .. 34
 To Generate a Noise Waveform .. 37
 To Set the DC Voltage .. 39
 To Output a Built-In Arbitrary Waveform 41
 To Use the Built-In Help System .. 43
Chapter 3 Performance Verification ... 44
 Performance Verification Test ... 44
 DC Output Verification .. 45
 AC Amplitude Verification .. 46
 Frequency Response Verification 47
Chapter 4 Assembly Procedures .. 49
 Security Consideration .. 49
 List of Modules ... 50
 Required Tools ... 50
 Disassembly Procedures ... 51
Chapter 5 Troubleshooting .. 56
 ESD Precautions ... 56
 Required Equipments .. 56
 Channel Board Drawing ... 58
 Main Board Drawing ... 59
 Check the Power Supply .. 60
 Check the Channel Board ... 62
 Voltage Checking ... 62
 10 MHz Clock Source Checking .. 63
 FPGA Checking ... 63
 Connector Checking .. 63
Overview of this Document

This document is for the SDG2000X series arbitrary waveform generator, which will be mostly referred to “the generator” for short in the following text. The main contents described in this manual are:

The SDG2000X Series Generator at a Glance
This part introduces the main technology characteristics for the SDG2000X generator.

The Front Panel at a Glance
This section introduces briefly all of the buttons and the knob on the front panel.

The Rear Panel at a Glance
This section introduces the ports for easy communication on the rear panel.

Specification
Chapter 1 lists the generator’s specifications.

Quick Start
Chapter 2 describes prepare the generator for use and helps you get familiar with a few of its front-panel features.

Performance Verification
Chapter 3 provides Performance Verification

Assembly Procedures
Chapter 4 provides disassembly procedures to help in gaining an understanding of the structure of the generator in preparing to install or replace any needed modules, or troubleshoot faults that might be encountered during operation.

Troubleshooting
Chapter 5 provides troubleshooting procedures for the internal circuit boards, as well as a quick guide for solving general problems. Before any operation, please read the ESD Precautions to avoid personal injuries or damages to the generator.

Maintenance
Chapter 6 provides information on maintenance, daily care and unpacking inspection of the instrument. The contact information is included at the end of
the chapter in case of some unsolvable troubles that might be encountered.

The Different SDG2000X Models Addressed by this Manual

All the description for function and performance in this document are according to the SDG2122X series generator, and apply to generator of the other types. The SDG2000X series contains the following types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Analog Bandwidth</th>
<th>Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDG2042X</td>
<td>40 MHz</td>
<td>2</td>
</tr>
<tr>
<td>SDG2082X</td>
<td>80 MHz</td>
<td>2</td>
</tr>
<tr>
<td>SDG2122X</td>
<td>120 MHz</td>
<td>2</td>
</tr>
</tbody>
</table>
The SDG2000X Series Generator at a Glance

SIGLENT’s SDG2000X is a series of dual-channel function/arbitrary waveform generators with specifications of up to 120 MHz maximum bandwidth, 1.2GSa/s sampling rate and 16-bit vertical resolution. The proprietary TrueArb & EasyPulse techniques help to solve the weaknesses inherent in traditional DDS generators when generating arbitrary, square and pulse waveforms. Using these techniques the SDG2000X provides users with a variety of high fidelity, low jitter signals in order to meet the growing requirements for a multitude of complex applications.

Characteristics

The powerful feature set for the SDG2000X generator family includes:

- Dual-channel, 120 MHz maximum bandwidth, 20 Vpp maximum output amplitude, high fidelity output with 80dB dynamic range
- High-performance sampling system with 1.2 GSa/s sampling rate and 16-bit vertical resolution. No detail in your waveforms will be lost
- Innovative TrueArb technology, based on a point-by-point architecture, supports any 8 pts ~ 8 Mpts Arb waveform with a sampling rate in range of 1 μSa/s ~ 75 MSa/s
- Innovative Easy Pulse technology, capable of generating lower jitter Square or Pulse waveforms, brings a wide range and extremely high precision in pulse width and rise/fall times adjustment
- Plenty of analog and digital modulation types: AM、DSB-AM、FM、PM、FSK、ASK、PSK and PWM
- Sweep and Burst function
- High precision Frequency Counter
- Standard interfaces: USB Host, USB Device（USBTMC）, LAN（VXI-11）

 Optional interface: GPIB
- 4.3” touch screen display for easier operation

Note: All the specifications described in this manual refer to the SDG2122X.
The Front Panel at a Glance

1. Power Switch
2. USB Host
3. Touch Screen Display
4. Numeric Keyboard
5. Knob
6. Arrow Keys
7. CH1/CH2 Control/Output Port
8. Channel Select Key
9. Function Keys
10. Waveform Option
11. Menu Keys
The User Interface at a Glance

SDG1000X can only display parameters and waveform for one channel at a time. The picture below shows the interface when CH1 is selected and AM modulation of a sine wave function is selected. The information displayed may vary depending on the function selected.

1. Waveform Display Area
 Displays the currently selected waveform of each channel.

2. Channel Status Bar
 Indicates the selected status and output configuration of the channels.

3. Basic Waveform Parameters Area
 Shows the current waveform's parameters for the selected channel. Press Parameter and select the corresponding softkey to highlight the parameter to configure. Then use number keys or knob to change the parameter value.

4. Channel Parameters Area
 Displays the load and output settings of the currently selected channel.
 Load ---- Value of the output load, as selected by the user.
Press **Utility** → **Output** → **Load**, then use the softkeys, number keys or knob to change the parameter value; or continue pressing the corresponding output key for two second to switch between High Impedance and 50 Ω.

High Impedance: display **HiZ**.
Load: display impedance value (the default is 50 Ω and the range is 50 Ω to 100 kΩ).

Note: This setting does not actually change the instrument’s output impedance of 50 Ω but rather is used to maintain amplitude accuracy into different load values.

Output ----Channel output state.
After pressing corresponding channel output control port, the current channel can be turned on/off.

5. **LAN Status Icon**
The SDG2000X will show different prompt messages based on the current network status.

- This mark indicates LAN connection is successful.
- This mark indicates there is no LAN connection or LAN connection is unsuccessful.

6. **Mode Icon**
The SDG2000X will show different prompt messages based on the current choosing status of the mode.

- This mark indicates current mode is Phase-locked.
- This mark indicates current mode is Independent.

7. **Menu**
Shows the menu corresponding to the displayed function. For example, Figure 4 shows the parameters of “AM modulation”.

8. **Modulation Parameters Area**
Shows the parameters of the current modulation function. After selecting the corresponding menu, use number keys or knob to change the parameter value.
The Rear Panel at a Glance

WARNING: For protection from electric shock, the grounding power cord must not be defeated. If only a two-contact electrical outlet is available, connect the instrument’s chassis ground screw (see above) to a good earth ground.
Chapter 1 Specifications

These specifications apply to the SDG2000X series Arbitrary Waveform Generators. To verify that a generator meets the specifications, it must first meet the following conditions:

- The generator must have been operating continuously for thirty minutes within the specified operating 18 °C ~ 28 °C temperature.
- The generator must be within the factory calibration interval of one year.

Frequency Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1μ</td>
<td></td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Initial accuracy</td>
<td>-1</td>
<td>+1</td>
<td>ppm</td>
<td>25 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>+2</td>
<td>ppm</td>
<td>0~40 °C</td>
<td></td>
</tr>
<tr>
<td>1st-year aging</td>
<td>-1</td>
<td>+1</td>
<td>ppm</td>
<td>25 °C</td>
<td></td>
</tr>
<tr>
<td>10-year aging</td>
<td>-3.5</td>
<td>+3.5</td>
<td>ppm</td>
<td>25 °C</td>
<td></td>
</tr>
</tbody>
</table>

Sine Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1μ</td>
<td></td>
<td>120M</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td></td>
<td></td>
<td>-65</td>
<td>dBc</td>
<td>0 dBm, 0~10 MHz (Included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-60</td>
<td>dBc</td>
<td>0 dBm, 10~20 MHz (Included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-55</td>
<td>dBc</td>
<td>0 dBm, 20~40 MHz (Included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-50</td>
<td>dBc</td>
<td>0 dBm, 40~60 MHz (Included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-45</td>
<td>dBc</td>
<td>0 dBm, 60~80 MHz (Included)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-40</td>
<td>dBc</td>
<td>0 dBm, 80~100 MHz (Included)</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>0.075</td>
<td>%</td>
<td></td>
<td></td>
<td>0 dBm, 10 Hz ~ 20 kHz</td>
</tr>
<tr>
<td>Non-harmonic spurious</td>
<td>-70</td>
<td>dBc</td>
<td>≤50 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-65</td>
<td>dBc</td>
<td>>50 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Square Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1μ</td>
<td></td>
<td>25M</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Rise/fall times</td>
<td>9</td>
<td>ns</td>
<td>10%~90%, 1 Vpp, 50 Ω Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overshoot</td>
<td>3</td>
<td>%</td>
<td>100 kHz, 1 Vpp, 50 Ω Load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Square Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty cycle</td>
<td>0.001</td>
<td></td>
<td>99.999</td>
<td>%</td>
<td>Limited by frequency setting</td>
</tr>
<tr>
<td>Jitter (rms), Cycle to cycle</td>
<td></td>
<td>150</td>
<td>ps</td>
<td>1 Vpp, 50 Ω Load</td>
<td></td>
</tr>
</tbody>
</table>

Pulse Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1μ</td>
<td></td>
<td>25M</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>16.3</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Pulse width accuracy</td>
<td>±(0.01%+0.3ns)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise/fall times</td>
<td>8.4ns</td>
<td></td>
<td>22.4</td>
<td>s</td>
<td>10% ~ 90%, 1 Vpp, 50 Ω Load, Subject to pulse width limits</td>
</tr>
<tr>
<td>Overshoot</td>
<td>3 %</td>
<td></td>
<td></td>
<td></td>
<td>100 kHz, 1 Vpp</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>0.001</td>
<td></td>
<td>99.999</td>
<td>%</td>
<td>Limited by frequency setting</td>
</tr>
<tr>
<td>Duty cycle resolution</td>
<td>0.001</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jitter (rms) cycle to cycle</td>
<td></td>
<td>150</td>
<td>ps</td>
<td>1 Vpp, 50 Ω Load</td>
<td></td>
</tr>
</tbody>
</table>

Ramp Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1μ</td>
<td></td>
<td>1M</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td>0</td>
<td></td>
<td>100</td>
<td>%</td>
<td>Percentage of peak-peak output, 1 kHz, 1 Vpp, 100% symmetry</td>
</tr>
<tr>
<td>Linearity</td>
<td>1 %</td>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Noise Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3dB bandwidth</td>
<td>120</td>
<td></td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbitrary Wave Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1μ</td>
<td></td>
<td>20M</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Waveform length</td>
<td>8</td>
<td></td>
<td>8M</td>
<td>pts</td>
<td>TrueArb mode</td>
</tr>
<tr>
<td>Sample rate</td>
<td>1μ</td>
<td></td>
<td>75M</td>
<td>Sa/s</td>
<td>DDS mode</td>
</tr>
<tr>
<td>Vertical solution</td>
<td>16</td>
<td></td>
<td></td>
<td>bit</td>
<td>TrueArb mode</td>
</tr>
<tr>
<td>Jitter (rms)</td>
<td></td>
<td>150</td>
<td>ps</td>
<td>1 Vpp, 50 Ω Load, TrueArb mode</td>
<td></td>
</tr>
</tbody>
</table>
DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-10</td>
<td>10</td>
<td>V</td>
<td>HiZ load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>5</td>
<td>V</td>
<td>50 Ω Load</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(1%+2 mV)</td>
<td></td>
<td></td>
<td>HiZ load</td>
<td></td>
</tr>
</tbody>
</table>

Output Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (Note 1)</td>
<td>2m</td>
<td>20</td>
<td>Vpp</td>
<td>≤20 MHz, HiZ load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2m</td>
<td>10</td>
<td>Vpp</td>
<td>>20 MHz, HiZ load</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>±(1%+1mVpp)</td>
<td></td>
<td></td>
<td>10 kHz Sine, 0 V offset,</td>
<td></td>
</tr>
<tr>
<td>Amplitude flatness</td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td>0~100 MHz (Included), 50 Ω Load, 2.5 Vpp, compare to 10 KHz Sine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>+0.4</td>
<td>dB</td>
<td>100~120 MHz (Included), 50 Ω Load, 2.5 Vpp, compare to 10 KHz Sine</td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>49.5</td>
<td>50</td>
<td>50.5</td>
<td>Ω</td>
<td>10 KHz Sine</td>
</tr>
<tr>
<td>Output current</td>
<td>-200</td>
<td>200</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>-60</td>
<td>dBC</td>
<td></td>
<td>CH1 - CH2, and CH2 - CH1</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The specification will be divided by 2 when applied to a 50 Ω Load.

Modulation Characteristics

AM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Sine, Square, Ramp, Noise, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation depth</td>
<td>0</td>
<td>120</td>
<td>%</td>
<td>While modulation source is “Internal”</td>
<td></td>
</tr>
<tr>
<td>Modulation frequency</td>
<td>1m</td>
<td>1M</td>
<td>Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Sine, Square, Ramp, Noise, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulation Characteristics

<table>
<thead>
<tr>
<th>wave</th>
<th>Frequency deviation</th>
<th>0</th>
<th>0.5*B W</th>
<th>BW is the max. output frequency Limited by frequency setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation frequency</td>
<td>1m</td>
<td>1M Hz</td>
<td>While modulation source is “Internal”</td>
<td></td>
</tr>
</tbody>
</table>

PM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Sine, Square, Ramp, Noise, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase deviation</td>
<td>0</td>
<td>360 °</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation frequency</td>
<td>1m</td>
<td>1M Hz</td>
<td>While modulation source is “Internal”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Square with 50% duty cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keying frequency</td>
<td>1m</td>
<td>1M Hz</td>
<td>Limited by frequency setting while modulation source is “Internal”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FSK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Square with 50% duty cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation frequency</td>
<td>1m</td>
<td>1M Hz</td>
<td>While modulation source is “Internal”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PWM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>Pulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Source</td>
<td>Internal/External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulating wave</td>
<td>Sine, Square, Ramp, Noise, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulation Characteristics

<table>
<thead>
<tr>
<th>Modulation frequency</th>
<th>1m</th>
<th>1M</th>
<th>Hz</th>
<th>While modulation source is “Internal”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse width deviation resolution</td>
<td>6.67</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Burst Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Type</td>
<td>Sine, Square, Ramp, Pulse, Noise, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier Type</td>
<td>Count(1-1000000cycles), Infinite, Gated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>2m</td>
<td>BW</td>
<td>Hz</td>
<td>BW is the max. output frequency</td>
<td></td>
</tr>
<tr>
<td>Start/Stop phase</td>
<td>0</td>
<td>360</td>
<td>°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal period</td>
<td>1μ</td>
<td>1000</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger source</td>
<td>Internal, External, Manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gated source</td>
<td>Internal /External</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger delay</td>
<td>100</td>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sweep Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Type</td>
<td>Sine, Square, Ramp, Arb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Linear, Log</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>1μ</td>
<td>BW</td>
<td>Hz</td>
<td>BW is the max. output frequency</td>
<td></td>
</tr>
<tr>
<td>Sweep time</td>
<td>1m</td>
<td>500</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger source</td>
<td>Internal, External, Manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency Counter Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Frequency, Period, Positive/Negative pulse width, Duty cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling mode</td>
<td>AC, DC, HFREJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency range</td>
<td>100m</td>
<td>200M</td>
<td>Hz</td>
<td>DC coupling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>200M</td>
<td>Hz</td>
<td>AC coupling</td>
<td></td>
</tr>
<tr>
<td>Input amplitude</td>
<td>100mV</td>
<td>±2.5 V</td>
<td></td>
<td>DC coupling, < 100 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200mV</td>
<td>±2.5 V</td>
<td></td>
<td>DC coupling, 100 MHz ~ 200</td>
<td></td>
</tr>
</tbody>
</table>
Frequency Counter Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>100mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, < 100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>200mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, 100 MHz ~ 200 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>1M Ω</td>
</tr>
</tbody>
</table>

Reference Clock Input/Output

Reference Clock Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>100mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, < 100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>200mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, 100 MHz ~ 200 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>1M Ω</td>
<td>AC coupling</td>
</tr>
</tbody>
</table>

Reference Clock Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>100mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, < 100 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>200mV rms</td>
<td>5 Vpp</td>
<td>AC coupling, 100 MHz ~ 200 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input impedance</td>
<td>1M Ω</td>
<td>AC coupling</td>
</tr>
</tbody>
</table>

Auxiliary In/Out Characteristics

Trigger Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\text{IH}</td>
<td>2 V</td>
<td>5.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{IL}</td>
<td>-0.5 V</td>
<td>0.8 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>100 kΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>100 ns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response time</td>
<td>100 ns</td>
<td>Sweep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 ns</td>
<td>Burst</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trigger Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\text{OH}</td>
<td>3.8 V</td>
<td></td>
<td>I\text{OH} = 8 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\text{OL}</td>
<td>0.44 V</td>
<td></td>
<td>I\text{OL} = 8 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>100 Ω</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sync Output

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
</table>

18 SDG2000X_ServiceManual_SM 0202X-E01B.doc
Auxiliary In/Out Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>3.8</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>0.44</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>100</td>
<td>Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse width</td>
<td>500</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>1</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulation Input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>0</td>
<td>50</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>10</td>
<td>kΩ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude@100% Modulation depth</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>Vpp</td>
<td></td>
</tr>
</tbody>
</table>

General Characteristics

Power

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>100</td>
<td>Vrms</td>
<td>±10%</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Vrms</td>
<td>±10%</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Vrms</td>
<td>±10%</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>25.5</td>
<td>W</td>
<td></td>
<td></td>
<td>Dual channels, Sine, 1 kHz, 10 Vpp, 50 Ω load</td>
</tr>
</tbody>
</table>

Display

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color depth</td>
<td>24</td>
<td>bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>350:1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminance</td>
<td>300</td>
<td>cd/m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Touch panel type</td>
<td>Resistive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0</td>
<td>40</td>
<td>℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20</td>
<td>60</td>
<td>℃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating humidity</td>
<td>5</td>
<td>90</td>
<td>%</td>
<td>≤30 °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50</td>
<td>%</td>
<td>40 °C</td>
<td></td>
</tr>
<tr>
<td>Non-operating humidity</td>
<td>5</td>
<td>95</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Operating altitude</td>
<td>3048 m</td>
<td>≤ 30 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-operating altitude</td>
<td>15000 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
<td>Condition</td>
</tr>
<tr>
<td>Calibration interval</td>
<td>1</td>
<td></td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
<td>Unit</td>
<td>Condition</td>
</tr>
<tr>
<td>Dimensions</td>
<td>W×H×D = 260.3mm×107.2mm×295.7mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight</td>
<td>3.43 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross weight</td>
<td>4.42 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVD</td>
<td>IEC 61010-1:2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>EN61326-1:2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2 Quick Start

One of the first things you will want to do with your generator is to become acquainted with the front panel. We have written the exercises in this chapter to prepare the instrument for use and help you get familiar with some of its front-panel operations. This chapter is divided into the following sections:

- To Prepare the Generator for Use
- To Adjust the Carrying Handle
- To Set the Output Frequency
- To Set the Output Amplitude
- To Set a DC Offset Voltage
- To Set the Duty Cycle of a Square Waveform
- To Set the Symmetry of a Ramp Waveform
- To Configure a Pulse Waveform
- To Configure a Noise Waveform
- To Set the DC Voltage
- To Output a Built-In Arbitrary Waveform
- To Use the Built-In Help System
To Prepare the Generator for Use

1. Check the list of accessories

Accessories supplied with the instrument are listed below. If anything is missing or damaged, please contact your nearest SIGLENT Sales Office.

- A Quick Start
- A Certification
- A Guaranty Card
- A CD (EasyWave software, Datasheet and User Manual)
- A power cord designed for use in the destination country
- A USB cable
- A BNC cable

2. Connect the power cord and turn on the generator

The instrument runs a short power-on self-test, which takes several seconds.

The generator powers up in the sine wave function at 1 kHz with an amplitude of 4 V peak-to-peak (CH1). At power-on, the Output connector is disabled. To enable the Output connector, press the Output key.

If the generator does not turn on, verify that the power cord is firmly connected to the power socket on the rear panel (the power-line voltage is automatically sensed at power-on). Also, make sure that the generator is connected to a power source that is energized.

Then, verify that the generator is turned on.

Note: If the power-on self-test fails, the generator may stop and display a black screen. For solutions, please contact the nearest SIGLENT sales office or return the generator to SIGLENT for service.
To Adjust the Carrying Handle

To adjust the position, grasp the handle by the sides and pull outward. Then, rotate the handle to the desired position.

Pull the handle ahead for easy carrying

Pull the handle down
To Set the Output Frequency

The following steps explain how to change the frequency to 20 KHz.

1. **Press the Parameter softkey**

Press the Parameter softkey to enter the parameter set interface. The waveform parameters including Frequency/Period, Amplitude/HighLevel, Offset/LowLevel and Phase are ready to modify using the numeric keypad.

2. **Press the Frequency/Period softkey**

The displayed frequency is either the power-on value or the frequency previously selected. When changing the function, the same frequency is used if the current value is valid for the new waveform. To set the period, press the softkey again to switch to the period parameter.

3. **Input the desired frequency**

Use the digital keypad to input the value directly, enter the value “20”.
Then press the corresponding softkey to select the desired unit. For example, press k\text{Hz}.

\textbf{Note:} The desired numerical value can be modified using the knob and direction keys.
To Set the Output Amplitude

The following steps describe how to change the amplitude to 8 Vpp.

1. **Press the Amplitude/HighLevel softkey**

 The displayed amplitude is either the power-on value or the amplitude previously selected. When changing the function, the same amplitude is used if the current value is valid for the new waveform. To set the HighLevel for the waveform, press the softkey again to switch to the HighLevel parameter.

2. **Input the desired amplitude**

 Use the digital keypad to input the value directly, enter the value “8”.

 ![Waveform Display](image)

 Then press the corresponding softkey to select the desired unit. For example, press Vpp.
To Set the DC offset

The following steps describe how to change offset to 1 Vdc.

1. Press the Offset/LowLevel softkey

The displayed offset is either the power-on value or the offset previously selected. When changing the function, the same offset is used if the current value is valid for the new waveform. To set the LowLevel for the waveform, press the softkey again to switch to the LowLevel parameter.

2. Input the desired offset

Use the digital keypad to input the value directly, enter the value “1”.

Then press the corresponding softkey to select the desired unit. For example, press Vdc.
Note: The desired numerical value can be modified using the knob and direction keys.
To Set the Duty Cycle of a Square Waveform

At power-on, the default duty cycle for square wave is 50%. The duty cycle setting range is limited by the “Frequency/Period” setting. The following steps show how to change the duty cycle to 80%.

1. Select the square wave function

Press [Waveforms] → [Square] to select the square function and then select the desired output frequency to 1 kHz.

2. Press the DutyCycle softkey

The displayed duty is either the power-on value or the percentage previously selected.

3. Input the desired duty

Use digital keypad to input the value directly, enter the value “80”, then press the corresponding softkey to select the desired unit “%”.
CH1: Square, ON, HiZ

- Frequency: 1.000 000 kHz
- Amplitude: 4.000 Vpp
- Offset: 0.000 Vdc
- Phase: 0.00°
- Duty: 80%
- Load: HiZ
- Output: ON

CH2: Sine, ON, HiZ
To Set the Symmetry of a Ramp Waveform

At power-on, the Symmetry for Ramp wave is 50%. The symmetry can be adjusted between 0% and 100%. The following steps describe the procedure to set the symmetry to 60%.

1. Select the Ramp wave function

Press [Waveforms] → [Ramp] to select the pulse function and then select the desired output frequency to 1 MHz.

2. Press the Symmetry softkey

The displayed symmetry is either the power-on value or the percentage previously selected.

3. Input the desired symmetry

Use digital keypad to input the value directly, enter the value “60”, then press the corresponding softkey to select the desired unit “%”.

![Waveform Display](image.png)
To Generate a Pulse Waveform

The generator can be set to output a pulse waveform with variable width, edge time and delay time. The following steps show you how to generate a 500 µs period pulse waveform with a pulse width of 100 µs, rise time of 8 ns and delay time of 50 ns.

1. Select the pulse function
Press Waveforms → Pulse to select the pulse function and output a pulse waveform with the default parameters.

2. Set the Pulse period
Press the Frequency/Period softkey twice and then set the period to 500 µs.

3. Set the Pulse Width
Press the PulWidth/Duty softkey and then set the pulse width to 100 µs. The pulse width represents the time from the 50% threshold of the rising edge to the 50% threshold of the next falling edge.
4. Set the Edge Time

Press the *Rise/Fall* softkey and then set the rising edge to 10 ns.

5. Set the Pulse Delay

Press the *Delay* softkey and then set the delay time to 50 ns.
To Generate a Noise Waveform

The generator can be set to output a noise waveform with an adjustable Stdev and Mean. The following steps show you how to generate a noise waveform with 500 mV Stdev and 1 mV Mean.

1. Select the Noise function
Press Waveforms → Noise to select the noise function and output a noise waveform with the default parameters.

2. Set the Stdev
Press the Stdev softkey and then set the Stdev to 500 mV.
3. Set the Mean

Press the Mean softkey and then set the mean to 1 mV.
To Set the DC Voltage

The following steps show how to set a dc voltage with +1 Vdc.

1. Select the DC function

Press Waveforms → Page 1/2 → DC to select the DC function.

2. Set the DC Offset

Use the digital keypad to input the value directly, enter the value “1”.

Then press the corresponding softkey to select the desired unit. For example, press Vdc.
To Output a Built-In Arbitrary Waveform

There are approximately 200 built-in arbitrary waveforms stored in non-volatile memory. The following steps show how to output the built-in “exponential fall” waveform from the front panel.

1. Set the arbitrary waveform function

Press Waveforms → Page 1/2 → Arb Type → Built-In to enter the arbitrary waveform setting interface.

2. Set the Math waveform

Press the Math softkey to display the mathematic waveform as below.
3. Output the exponential fall waveform

Rotate the knob to select the ExpFall waveform and press the knob. The waveform is output with the present settings unless they are changed.
To Use the Built-In Help System

The built-in help system is designed to provide context-sensitive assistance of some functions. A list of help topics is also available to assist you with several operations.

1. Read the help information

Press Utility → System → Page 1/2 → Help to enter the following interface. You will see a list of help topics as below. Use Up and Down keys, then press Select to choose a Help topic.

<table>
<thead>
<tr>
<th>Highlight a topic and press “Select”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. System information.</td>
</tr>
<tr>
<td>2. Generating a standard waveform.</td>
</tr>
<tr>
<td>3. Generating an arbitrary waveform.</td>
</tr>
<tr>
<td>4. Generating a modulated waveform.</td>
</tr>
<tr>
<td>5. Sweep function.</td>
</tr>
<tr>
<td>7. Store/Recall.</td>
</tr>
<tr>
<td>8. Synchronizing multiple instruments.</td>
</tr>
<tr>
<td>9. Restoring factory settings.</td>
</tr>
</tbody>
</table>

2. Press “Cancel” or any function button to exit the help system
Chapter 3 Performance Verification

Performance Verification Test

The performance verification tests are recommended as acceptance tests upon receipt of the instrument. The acceptance test results should be compared against the specifications given in chapter 1. After acceptance, repeat the performance verification tests at every calibration interval.

If the instrument fails performance verification, adjustment or repair is required.
DC Output Verification

This test checks if the DC offset listed in the table below are within the spec range using a DMM.

1. Set the DMM to measure DC voltage. Connect the DMM to the CH1 output of the generator as shown below.

2. Turn on CH1 and select the DC waveform.

3. Set the instrument to each output value described in the table below and measure the output voltage with the DMM. Be sure the generator output load is set to High-Z and the output is enabled.

<table>
<thead>
<tr>
<th>DC Offset</th>
<th>CH1</th>
<th>CH2</th>
<th>Spec Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mV</td>
<td></td>
<td></td>
<td>-2 mV ~ 2 mV</td>
</tr>
<tr>
<td>10 mV</td>
<td></td>
<td></td>
<td>7.9 mV ~ 12.1 mV</td>
</tr>
<tr>
<td>100 mV</td>
<td></td>
<td></td>
<td>97 mV ~ 103 mV</td>
</tr>
<tr>
<td>1 V</td>
<td></td>
<td></td>
<td>0.988 V ~ 1.012 V</td>
</tr>
<tr>
<td>3 V</td>
<td></td>
<td></td>
<td>2.968 V ~ 3.032 V</td>
</tr>
<tr>
<td>10 V</td>
<td></td>
<td></td>
<td>9.898 V ~ 10.102 V</td>
</tr>
<tr>
<td>-10 mV</td>
<td></td>
<td></td>
<td>-12.1 mV ~ -7.9 mV</td>
</tr>
<tr>
<td>-100 mV</td>
<td></td>
<td></td>
<td>-103 mV ~ -97 mV</td>
</tr>
<tr>
<td>-1 V</td>
<td></td>
<td></td>
<td>-1.012 V ~ -0.988 V</td>
</tr>
<tr>
<td>-3 V</td>
<td></td>
<td></td>
<td>-3.032 V ~ -2.968 V</td>
</tr>
<tr>
<td>-10 V</td>
<td></td>
<td></td>
<td>10.102 V ~ -9.898 V</td>
</tr>
</tbody>
</table>

4. Compare the measured voltage to the spec range shown in the table above.
AC Amplitude Verification

This test checks the ac amplitude output accuracy at the frequency of 10 kHz using a DMM.

1. Turn on the generator and choose CH1 as the operating channel. Set the Load to 50 Ω.
2. Connect the DMM and generator as shown below.

3. Select Sine waveform of the generator and set the amplitude to the values listed below in sequence.

<table>
<thead>
<tr>
<th>Amplitude (V)</th>
<th>CH1 (V)</th>
<th>CH2 (V)</th>
<th>Spec Range (V) ± (1%+1 mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>10.889~11.111</td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
<td>5.543~5.657</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1.979~2.021</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td>0.89~0.91</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td>0.395~0.405</td>
</tr>
<tr>
<td>0.142</td>
<td></td>
<td></td>
<td>0.13958~0.14442</td>
</tr>
<tr>
<td>0.064</td>
<td></td>
<td></td>
<td>0.06236~0.06564</td>
</tr>
<tr>
<td>0.022</td>
<td></td>
<td></td>
<td>0.02078~0.02322</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
<td>0.0089~0.0111</td>
</tr>
<tr>
<td>0.004</td>
<td></td>
<td></td>
<td>0.00296~0.00504</td>
</tr>
</tbody>
</table>

4. Remove the BNC cable to CH2 output and perform the same verification as CH1.
5. Compare the value measured from the DMM to the spec range shown in the table above.
Frequency Response Verification

This test checks if the amplitude flatness is within the spec range using a Power Meter.

1. Turn on the generator and choose CH1 as the operating channel. Set the Load to 50 Ω.
2. Connect the Power Meter, PC and generator as shown below.

3. Select Sine waveform of the generator and set the amplitude to 1 V and 2.5 V, frequency to the values listed below in sequence.

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>1 V</th>
<th>2.5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>CH1</td>
<td>CH2</td>
</tr>
<tr>
<td>10 KHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>100 KHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>1 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>5 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>20 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>30 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>50 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>80 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>3.6794 ~ 4.2794</td>
<td></td>
</tr>
<tr>
<td>110 MHz</td>
<td>3.5794 ~ 4.3794</td>
<td></td>
</tr>
<tr>
<td>120 MHz</td>
<td>3.5794 ~ 4.3794</td>
<td></td>
</tr>
</tbody>
</table>

4. Remove the BNC cable to CH2 output and perform the same verification as
CH1.

5. Compare the value measured from Power Meter to the spec range shown in the table above.
Chapter 4 Assembly Procedures

This chapter describes how to remove the major modules from the SDG2000X series generator. To install the removed modules or replace new modules, please follow corresponding operating steps in reverse order.

The following subjects are addressed in this chapter:

- **Security Consideration** which describes security information needed to considerate while operating.
- **List of Module** in which the modules to remove are listed.
- **Required Tool** which describes the tools needed to perform the procedures
- **Disassembly Procedures** which describes in detail how to remove and install the modules

Security Consideration

Only qualified personnel should perform the disassembly procedures. Whenever possible, disconnect the power before removing or replacing. Otherwise, personal injuries or damages to the components may occur.

Avoid Electric Shock Hazardous voltages exist on the LCD module and power supply module. To avoid electrical shock, disconnect the power cord from the generator, and then wait at least three minutes for the capacitors in the generator to discharge before beginning the disassembly.

Preventing ESD Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damages can occur at electrostatic discharge voltages as low as 50 volts. The following guidelines will help preventing ESD damage when servicing the instrument or any electronic device.

- Disassemble instruments only in a static-free work area.
- Use a conductive work area to reduce static charges.
- Use a conductive wrist strap to reduce static charge accumulation.
- Minimize handling.
- Keep replacement parts in original static-free packaging.
◆ Remove all plastic, foam, vinyl, paper and other static-generating materials from the immediate work area.
◆ Use only anti-static solder suckers.

List of Modules

The following removable modules are listed in the order of performing disassembly procedures.

<table>
<thead>
<tr>
<th>Number of Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Handle</td>
</tr>
<tr>
<td>2</td>
<td>Metal Shell and Rear Cabinet</td>
</tr>
<tr>
<td>3</td>
<td>Front Cabinet</td>
</tr>
<tr>
<td>4</td>
<td>Display Module</td>
</tr>
<tr>
<td>5</td>
<td>Main Body</td>
</tr>
</tbody>
</table>

Required Tools

Use these tools to remove or replace the modules in the generator:

- T10 and T15 Torx screwdriver
Disassembly Procedures

This section describes how to remove and install the generator’s modules listed above in detail. Complete disassembly will be best achieved through the following operating steps.

1. Pull out the handle hard from the two sides of the generator.

2. After removing 4PCS screws of the pad and 1PCS screw at the bottom of the generator’s case, remove the metal shell carefully from the main body to avoid being scratched.
3. Open the cable clamp as ①② show and pull out the cable as ③④⑤⑥ show, and then remove the 5PCS screws as shown in the following figure.

4. Separate the front panel from the main body of the generator.

5. Pull out the knob and then remove the screws attaching the hardware partition plate and the front cabinet screws.
6. Remove the keypad circuit board assembly.

7. Remove the 3PCS screws holding the screen bracket and remove the
metal front panel.

8. Pull out the connecting cable according to the index number as shown in the following figure and remove the keyboard.

9. Remove all the 9 screws fixed the main board and power supply board using the T10 Torx screwdriver and separate the main board and power supply board carefully from the main body of the generator to avoid being scratched by the sharp metal edge.
10. Pull out the connecting cable as shown in the following figure and then remove the fan, rear interface board, channel board and main board.

Note:
To assemble the generator, please follow these same steps in reverse order.
Chapter 5 Troubleshooting

The internal structure of the generator consists of the main board, channel board, power supply board, key and LCD board, and interface board. They are linked through cables or connectors. This chapter explains the main troubleshooting procedures for these boards (mainly main board and channel board) by measuring the corresponding test points and checking the signals of connectors on them, thus to help in determining the reason for the failure that has been encountered while operating the SDG2000X series arbitrary waveform generator.

ESD Precautions

While performing any internal test of the generator, please refer to the following precautions to avoid damages to its internal modules or components resulting from ESD.

- Handle circuit boards by their edges as much as possible.
- Avoid handling of static-sensitive modules if not necessary.
- Wear a grounded antistatic wrist strap to drain the static voltage from your body while touching these modules.
- Operate static-sensitive modules only in static-free areas. Avoid handling modules in areas that allow anything capable of generating or holding a static charge.

Required Equipments

The equipment listed in the table below is required to troubleshoot the generator.

Table 5-1 Required Equipments

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Multimeter</td>
<td>DC Accuracy ±0.015%</td>
<td>SDM3055</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>300 MHz Bandwidth</td>
<td>SDS2304X</td>
</tr>
</tbody>
</table>
Channel Board Drawing

The channel board is a kind of signal conditioning board for generating analog signal. It mainly deals with the adjusting of signal parameters such as frequency, amplitude, and so on. Please refer to the following drawing to quickly locate the test points on the channel board for easy resolution of any problems encountered.
Main Board Drawing

The main board is the control center of the generator that contains an ARM CPU system. It completes the GUI function, controlling and configuration function of the channel board as well as the user interface. Please refer to the following drawing to quickly locate the test points on the main board for easy resolution of any problems encountered.
Check the Power Supply

There are two power connectors through which the channel board and main board can be supplied power.

Before performing the power supply testing procedure, please make sure that the generator is grounded correctly through the protective lead of the power cord. Take care not to touch or even disassemble the power supply module without any safety precautions, electric shock could occur. Here are procedures for testing the power supply:

1. Disconnect the power cord of the generator and then check whether the fuse is good.
2. Remove metal shell of the generator, and then disconnect the power connector connected to the main board.
3. Focus on the Power Connector for channel board, which contains 6 pins from Pin 1 to Pin 6. Since two of the six pins are ground wire, test the other four pins that are marked with blue, yellow, red and white to check whether the voltage value is within the corresponding specified range using a digital multimeter. The voltage parameters to be tested are listed in the table below:

<table>
<thead>
<tr>
<th>Voltage value</th>
<th>Pins</th>
<th>Error limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 V</td>
<td>VH+(red)</td>
<td>±10%</td>
</tr>
<tr>
<td>-20 V</td>
<td>VH-(white)</td>
<td>±10%</td>
</tr>
<tr>
<td>6.5 V</td>
<td>VL+(yellow)</td>
<td>±10%</td>
</tr>
<tr>
<td>-6.5 V</td>
<td>VL-(blue)</td>
<td>±10%</td>
</tr>
</tbody>
</table>

If each tested voltage value is within the corresponding specified range listed in the table above, then the power supply is working normally. Otherwise, please go to step 4.

4. Disconnect the power connector and redo step 3. Because of the removal of the load, each voltage value error limit increases by approximately 20 percent.

Table 5-3 Test Voltages of the Connector After Disconnected

<table>
<thead>
<tr>
<th>Voltage value</th>
<th>Pins</th>
<th>Error limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 V</td>
<td>VH+(red)</td>
<td>±30%</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 V</td>
<td>VH-(white)</td>
<td>±30%</td>
</tr>
<tr>
<td>6.5 V</td>
<td>VL+(yellow)</td>
<td>±30%</td>
</tr>
<tr>
<td>-6.5 V</td>
<td>VL-(blue)</td>
<td>±30%</td>
</tr>
</tbody>
</table>

If each tested voltage value is within the specified range listed in the table above, then some abnormality of the load is most likely causing the power supply problem. Continuous checking or even replacing the channel/main board is required for further test.

If there is at least one voltage value that is out of the specified range, then the power supply module appears to be problematic, and a replacement will be required. For safety, please have qualified technical personnel to disassemble the power supply module.

Note: The main power supply provides an input fuse to protect against the danger of fire in the event of a failure of the power supply circuitry. However, this fuse will not fail ("open" or "blow") in normal power supply operation except when a significant overload occurs. Replace the entire main power supply assembly if the input fuse fails.
Check the Channel Board

If it is desired to remove the channel board from the metal shelf inside the generator, please place it on a clean, insulated mat. Here are the procedures for testing the main board:

1. Several types of connectors are used on the channel board. Check to make certain that all of these are connected properly.
2. After checking these connectors, then connect the generator to AC power and power it on. Check if the voltage values at all test points are within the specified range using a digital multimeter. The voltage parameters to be tested are listed in table 5-4:

Voltage Checking

Test the voltage points on the channel board in the table below. To locate the test points, please refer to the drawing of the channel board. If not each tested voltage value is within the corresponding spec range referring to table 5-4, it proves to be faulted, please return it to the factory to have it repaired or contact SIGLENT.

Table 5-4 Test Voltages of the Channel Board

<table>
<thead>
<tr>
<th>Test point</th>
<th>Voltage value</th>
<th>Error limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>+15 V</td>
<td>+15 V</td>
<td>±5%</td>
</tr>
<tr>
<td>-15 V</td>
<td>-15 V</td>
<td>±5%</td>
</tr>
<tr>
<td>-5 V</td>
<td>-5 V</td>
<td>±5%</td>
</tr>
<tr>
<td>+5 V</td>
<td>+5 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC1.8 V</td>
<td>+1.8 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC3.3 V</td>
<td>+3.3 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC2.5 V_A</td>
<td>+2.5 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC2.5 V_B</td>
<td>+2.5 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC1.5 V</td>
<td>+1.5 V</td>
<td>±5%</td>
</tr>
<tr>
<td>VCC1.1 V</td>
<td>+1.1 V</td>
<td>±5%</td>
</tr>
<tr>
<td>PLL_3.3 V</td>
<td>+3.3 V</td>
<td>±5%</td>
</tr>
</tbody>
</table>
10 MHz Clock Source Checking

There is a TXCO generating a 10 MHz 3.3 V LVCOMS clock source to the entire channel board. Please check it, referring to the marked point on the channel board drawing.

FPGA Checking

To check if the FPGA is working properly, please observe the test point marked with FPGA_LED on the channel board drawing. The LED light flashes at the rate of 1Hz in normal case, if it cannot be lighted or twinkles at incorrect frequency, then the FPGA may be at fault.

Connector Checking

Table 5-5 Connectors of the Channel Board

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON_J1</td>
<td>Communication between the main board and the channel board.</td>
</tr>
<tr>
<td>CON_J5</td>
<td>Communication between the channel board and the interface board.</td>
</tr>
<tr>
<td>CON_J6</td>
<td>Power supply of the channel board.</td>
</tr>
<tr>
<td>CON_J7</td>
<td>Power supply of the fan.</td>
</tr>
</tbody>
</table>

Table 5-5 explains the function of all the connectors on the channel board. It is important to ensure that all the connections are tight.
Check the Main Board

If the power board does need to be removed from the metal shelf located inside the generator, place it on a clean, insulated mat. Testing procedures for the main board are as follows:

1. Several types of connectors are located on the main board. Check if all these are connected properly.

2. Make certain that the connectors on the main board are properly connected, then connect the generator to AC power and turn it on. Check if the voltage values at all test points are within the spec range using a digital multimeter. The voltage parameters to be tested are listed in table 5-6:

Voltage Checking

Test the voltage points on the main board and compare to the table below. If each tested voltage value is within the corresponding specified range referring to the table below, then the main board works normally. If the voltages are out of the specified range, please return it to the factory to have it repaired or contact SIGLENT.

<table>
<thead>
<tr>
<th>Test point</th>
<th>Voltage value</th>
<th>Error limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 V</td>
<td>16 V</td>
<td>±5%</td>
</tr>
<tr>
<td>3.3 V</td>
<td>3.3 V</td>
<td>±5%</td>
</tr>
<tr>
<td>5 V</td>
<td>5 V</td>
<td>±5%</td>
</tr>
</tbody>
</table>

Main Board Clock Checking

The main board clock is the internal system clock of the generator. To verify if the clock on the main board is working normally, please test the clock using an oscilloscope.

<table>
<thead>
<tr>
<th>Test point</th>
<th>Frequency</th>
<th>Stability</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK_25 MHz</td>
<td>25 MHz</td>
<td>±50 ppm</td>
<td>3.3 V LVCOMS</td>
</tr>
</tbody>
</table>
ARM CPU System Checking

Observe the ARM_LED light on the main board, which indicates the working state of ARM CPU system. If the light turns on, then the corresponding codes have been loaded successfully and the chip is in an operating state. Otherwise, there may be a problem with it.

Connector Checking

Table 5-8 Connectors of the Main Board

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_CON_J3</td>
<td>Communication between the main board and the Key and LCD board.</td>
</tr>
<tr>
<td>M_CON_J14</td>
<td>Power supply of the main board.</td>
</tr>
<tr>
<td>M_CON_J4</td>
<td>Communication between the main board and the channel board.</td>
</tr>
<tr>
<td>M_CON_J15</td>
<td>USB host connector.</td>
</tr>
</tbody>
</table>

Table 5-8 explains the function of all the connectors on main board. It is important to ensure that all the connections are tight.
Quick Guide for General Failures

The general hardware failures are described in the following. Reading the following information can help in determining the cause of some general hardware failures:

1. **No start-up after pressing the power button:**

 (1) Check if the power cord is correctly connected.
 (2) Check if the power button is operating correctly.
 (3) Check whether the fuse has been burned out. If the fuse is blown, please replace with a fuse of the same rating.
 (4) Check if the connection between the power supply and the main board.
 (5) If the instrument still does not work normally, please contact SIGLENT.

2. **Starts up with a dark screen:**

 (1) Check the connection between the power supply and the main board.
 (2) Check the connection between the keypad circuit board and the main board.
 (3) If the instrument still does not work normally, please contact SIGLENT.

3. **No response after pressing any button, or abnormal display of the screen:**

 (1) Check the connection between the keypad circuit board and the main board.
 (2) If the instrument still does not work normally, please contact SIGLENT.

4. **The output voltage amplitude measured is higher or lower than expected:**

 (1) Check the connection between the generator and the load.
 (2) Check if the impedance set in generator matches the input impedance of the load.
 (3) If the instrument still does not work normally, please contact SIGLENT.
Chapter 6 Maintenance

Maintain Summary

SIGLENT warrants that the products it manufactures and sells are free from defects in materials and workmanship for a period of three years from the date of shipment from an authorized SIGLENT distributor. If a product proves defective within the respective period, SIGLENT will provide repair or replacement as described in the complete warranty statement.

To arrange for service or obtain a copy of the complete warranty statement, please contact your nearest SIGLENT sales and service office.

Except that as provided in this summary or the applicable warranty Statement, SIGLENT makes no warranty of any kind, express or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose. In no case shall SIGLENT be liable for indirect, special or consequential damages.

Repackaging for Shipment

If the unit needs to be shipped to SIGLENT for service or repair, be sure:

1. Attach a tag to the unit identifying the owner and indicating the required service or repair.
2. Place the unit in its original container with appropriate packaging material for shipping.
3. Secure the container with strong tape or metal bands.

If the original shipping container is not available, place your unit in a container which will ensure at least 4 inches of compressible packaging material around all sides for the instrument. Use static-free packaging materials to avoid additional damage to your unit.
Contact SIGLENT

Headquarters

SIGLENT TECHNOLOGIES CO., LTD.
Blog No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao’an District, Shenzhen, 518101, China.
Tel:+ 86 755 3688 7876
Fax:+ 86 755 3359 1582
sales@siglent.com
www.int.siglent.com/

North America

SIGLENT Technologies America, Inc
6557 Cochran Rd Solon, Ohio 44139
Tel: 440-398-5800
Toll Free:877-515-5551
Fax: 440-399-1211
info@siglent.com
www.siglentamerica.com

Europe

Siglent Technologies Germany GmbH
Staetzlinger Str. 70, 86165 Augsburg, Germany
Tel: +49(0)-821-666 0 111 0
Fax: +49(0)-821-666 0 111 22
E-mail: info-eu@siglent.com
Web: https://www.siglenteu.com